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Abstract - Each industry and equipment is unique, as the product streams differ, as well as layouts and operation variables, to
name a few. However, turnaround management is the most used strategy in the petrochemical industry. Equipment downtime
remains the biggest challenge; thus, the purpose of the study was to evaluate the current maintenance practices used on the
critical electromechanical equipment in the Sasol Synfuels Catalyst Preparation Unit. Data was collected from the SAP system
database, from which the breakdown of work orders was obtained for the period from January 2016 to June 2021. The data was
collected for each of the 13 electromechanical equipment identified in the catalyst preparation unit. A theoretical distribution
was drawn after that to assess the effectiveness of the current maintenance strategy compared to the identified key performance
indicators. The theoretical distribution analysis was used to determine the plant utilization, availability, and maintenance cost.
The results concluded that the plant utilization is above the prescribed parameter of 90%. All 12 pieces of equipment had

utilization results above 90% except for the arc furnace on the western unit, which resulted in 86.57%.

Keywords - Maintenance, Evaluation, SAP system database, Mean Time To Repair (MTTR), Availability, Maintenance cost,

Mean Time Before Failure (MTBF).

1. Introduction

The petrochemical industry is divided into three groups.
The first is the Upstream Petrochemical industry. This is the
baseline and supplier to the further production of the other
petrochemical products, of which it aims to produce primary
feedstock for the next group of products. Second is the
intermediate petrochemical industry, which utilizes the
products produced from the upstream to provide feedstock to
the Downstream production, the last main group. The
downstream petrochemical industry utilizes products from
both the upstream and intermediate to produce the end
products, such as synthetic plastic, rubber, etc. A study by
MAJOZI (2015) explored how the petrochemical industry in
South Africa accounts for about 55 percent of all chemicals
produced, thus requiring high energy consumption. Sasol uses
the Fischer-Tropsch process to produce liquids derived from
coal, such as synthetic rubber, fertilizers, and secondary
chemicals such as ethanol, butanol, ethyl acetate, acrylic acid,
and butyl acrylate, including diesel fuel. Through continuous
improvement and development, the Sasol Advanced process
(SAS) was introduced, which introduced seven new SAS
reactors in 1999. The whole process has a series of

connections. This means that every unit depends on the other
to provide the products needed; however small the unit might
be, it is crucial to provide the output product. The catalyst is
provided through U04/204, which is the catalyst preparation
unit. It plays an important role in providing the catalyst needed
for the SAS reactors. The catalyst is fed through process lines,
which assist in creating hydrocarbons needed in downstream
units.

Maintenance intends to retain or restore the equipment to
a state in which it can perform the required function. In other
words, maintenance is an action performed to prevent a device
or component from failing due to either normal equipment
degradation or breakdown. Several strategies are adopted to
maintain process equipment and its complexities, considering
the size of the Petrochemical plant. Every plant requires a
unique maintenance structure, which is affected primarily by
the size of the plant (FREDRIKSSON, 2012). Most industries'
maintenance methodologies employ an integrated strategy
where they incorporate both planned and unplanned activities.
The speed at which the plant is brought back online often
depends on the nature or complexity of the failure, the tools or
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machinery required, and availability. Other dependencies are
parts availability, skills or expertise required, maintenance
personnel availability, maintenance management system
operational in the plant, technical support needed, etc.
MINGANI (2013) reported three major maintenance
objectives that incorporate both planned and unplanned
maintenance. Equipment can be divided into two categories:
statutory and rotary. What distinguishes one from the other is
that one is stationary, and the other uses either electrical or
hydraulic energy to operate. Each piece of equipment is
unique in its design and operation. The maintenance strategy
applied for a specific piece of equipment cannot be utilized on
the other unless the design, environment, and operating
conditions are the same. Even with that said, some limitations
may cause the other to act differently due to unforeseen design
limitations, such as human errors.

Pressure equipment, such as reactors, heat exchangers,
and hoppers, is the major equipment utilized and maintained
proficiently with the guidance of the Pressure Equipment
Regulations, July 2009, Department of Labor, Occupational
Health and Safety Act, 1993 Revision 2. These augments are
crucial to the operation and the safety of people as they contain
hazardous substances in large amounts under high pressure
and temperature. Thus, Reliability-centered Maintenance is
the most used maintenance policy, which governs the
maintenance actions to be taken to mitigate and proactively
maintain the equipment, thus preventing the risk of any
unplanned damage.

Unlike most units, the catalyst preparation unit entails
both statutory and rotary equipment. Electromechanical
equipment refers to equipment that requires both mechanical
and electrical components to function. Such equipment
includes synchronous motors, electric valve actuators, pump
sets, conveyors, and compressors. (SONDALINI, 2018). This
equipment and machinery are subject to both electrical and
mechanical wear, each of which has a different life span
expectancy and failure rate. There are many data-analyzing
software programs used to store and transpose data input to
work orders. Many industries, such as Sasol, use the SAP data
system as a single enterprise-class solution for data
integration, data quality, data profiling, and text data
processing.

2. Evaluation of Maintenance Strategies
MBOHWA's (2016) study investigates machinery
breakdowns and their effects through the determination of
plant utilization and availability, as well as the evaluation of
sales lost due to downtime. With the aid of qualitative and
quantitative approaches, a robust solution was obtained for an
effective reliability-centred maintenance (RCM) decision
diagram. Within the evaluation stage, MBOHWA (2016) used
a key performance approach whereby a selection of
maintenance key performance indicators (KPI) is chosen to
measure the machines' performance based on them. Similarly,
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FREDIKSSON's (2012) study also explains how key
performance indicators are to be utilized as indicators for
obtaining critical assets. They are used to yield as an
assessment and thus to indicate the subject's maintenance
performance. Similarly, VISHNU's (2016) study states that
the performance of an employed maintenance strategy can be
analysed using different maintenance indicators such as Mean
Time Between Failures (MTBF), Mean Time To Repair
(MTTR), productivity, maintenance cost, and availability of
assets, to name a few.

The importance of evaluating the current maintenance
strategy employed is to determine the root cause of the
continuous breakdowns. This will allow maintenance
optimization to occur, which will minimize the cost of
maintenance, minimize production loss, and maximize
availability, including reliability. (HILBER, 2008). The
calculation for each piece of equipment focuses on the failure
rate, maintenance downtime in days, MTBF, MTTR, and the
inherent availability of the equipment.

According to ONDIEKI (2008), availability is the
likelihood that a stated percentage of equipment or missions
will have no downtime above t in the mission time, T. This
means that decreased reliability can be affected by good
maintainability. The higher the plant availability, the more
effective the maintenance strategy is, and vice versa.
(MBOHWA, 2016).

Inherent availability is defined as the probability that a
system or equipment, when operated under an ideal support
environment, functions satisfactorily at any time as required.
This, however, excludes preventive or scheduled maintenance
actions, logistics delay time, and administrative delay time.
This is expressed as in Eq. (1):

A;= MTBF/(MTBF + MTTR) €))

The Mean Time To Repair (MTTR) simply considers the
total time for the repair to be done. Many influences extend
the repair time, such as access time, diagnosis time, and spare
part procurement, as stated in the ONDIEKI (2008) study.
Thus, each of the recovery activities will be obtained as in Eq.

2):

Ta/f; where T, is the failure time over the number of
failures f @)

Apart from the MTTR, the failure rate A will be
determined in Eq. (3):

A= f/T; where T is the total time of operation  (3)
Mean Time Between Failures (MTBF) can be obtained

using the inverse of failure rate as in Eq. (4) (INFRALET,
2016):
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TOTAL OPERATIVE TIME
TOTAL NUMBER OF FAILURES

MTBF=

MTBF= 1/2 4

The lower the maintenance cost due to downtime, the
more effective the maintenance strategy is. According to
ONDIEKI's (2008) study, the field is crucial to obtaining real
conditions as it concerns failures and repair actions that have
occurred online. As recording field incidents relies on people,
it is subject to human errors, omissions, and
misinterpretations.

3. Novelty of Study

The purpose of this study is to investigate the
maintenance performance of the electromechanical equipment
used in the Sasol catalyst preparation unit. This forms part of
the case study, as several failures were experienced within the
plant. Though maintenance strategies were already in place,
the plant experienced high maintenance costs due to frequent
equipment failures. To better understand system performance,
it becomes essential to develop well-defined performance
indicators for each equipment, which is the objective of this
study.

4. Research Methodology
4.1. Case Study

The case study is mainly focused on electromechanical
equipment utilized in the Sasol Synfuels catalyst preparation
unit, which consists of:

1. Kiln

2. Conveyor belts

3. Arc Furnace

4. Casting Machine
Ball Mill

The Sasol Synfuels catalyst preparation unit consists of a
Kiln (X04KN-101A and B), which uses the RMS (raw mill
scale) fed by the conveyor belts (X04CV-101A and B) to burn
the RMS and produce OMS (Oxidized Mill Scale). The OMS
is then stored in the Bin. From the Bin using conveyor belts,
the OMS is fed into the Arc furnace (X04AF-141A and B),
which uses Electrodes to burn the product with promoters so
that it melts the OMS into a molten catalyst.

The catalyst is fed into the crusher to crush the cooled
catalyst into small quantities using jaws, using the casting
machine (X04CM-141), with spraying water coolers. The
catalyst is fed into the storage Hopper manually from the
crusher, whereby conveyor belts are utilized to transport the
catalyst into the rotating Ball mill (X04GM-141). The ball mill
consists of steel balls to further reduce the size of the catalyst
to a finer product according to the Sasol specification. Inside
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the ball mill is the classifier, better known as the vacuum
pump, which extracts the unused catalyst and feeds it to the
hopper to further crush the catalyst. The unreduced catalyst
from the ball mill is fed into the Casting Bin using conveyor
belts, where it will be stored until the demand for the reduced
catalyst is needed. Eventually, the reduced catalyst is fed into
the Reactors to create hydrocarbons.

4.2. Evaluation of the Current Maintenance Strategy within
the Plant

The analysis contains both east and west units. The
eastern unit consists of two arc furnaces, conveyor belts, and
kilns, all running concurrently, making a total of 8 equipment.
The western unit consists of 5 electromechanical equipment,
thus making 13 pieces of equipment.

For this study, field information was gathered through the
Sasol SAP system. Using the Sasol SAP system, the
breakdown work orders were pulled from the system for each
piece of equipment.

The following information is required as input in the SAP
software to obtain the data, as shown in Figure 1.

1. Equipment Technical Identification
2. Specific work order code (AMO5)
3. Work centre of the unit

4. Duration of data being collected.

Input data is crucial to obtain the correct data required.
SAP will automatically pull the necessary information based
on the inputs. The data can then be exported to either Excel or
PDF form for use. The data collected had to be cleaned by
analysing each work order together with assistance from the
mechanical supervisor. The formulae were used in an Excel
spreadsheet, and calculations were made for each specific
piece of equipment.

Heoe s

Fig. 1 SAP PM orders selection



Pretty Maphosa & Patrick Nziu/IJETT, 73(10), 203-226, 2025

The work orders were then classified correctly as
breakdowns, and those identified as not breakdowns were then
removed from the Excel list. Using the hypothesis test derived
by the MBOHWA (2016) study, as in Appendix 2, the plant
utilization and availability were obtained by comparing the
electromechanical equipment in the Sasol catalyst preparation
unit.

5. Results and Discussion of Results
5.1. Effectiveness of the Applied Maintenance Strategy

In this section, the effectiveness of the maintenance
strategy applied to the electromechanical equipment was
analysed. Mainly the western unit (004 unit) and the eastern
unit (204 unit). As stipulated previously, the eastern unit
consists of 2 arc furnaces, conveyor belts, and kilns, all
running concurrently. On the western unit, there is only one
piece of equipment.

This makes a total of thirteen pieces of equipment. The
data input received from SAP for each piece of equipment was
analysed and cleaned by obtaining each work order and
notification attached to the work order to assess the
breakdown notification. The graphs attached in Appendix 1
(Figures 2 to 53) illustrate the data results obtained from 13
different equipment dating from January 2016 to July 2021.
Due to the rolling average of 12 months calculated for the
MTRBEF, the data started in January 2017. The following results
were obtained from the information received.

5.1.1. MTTR and Availability

MTTR is indirectly proportional to the availability, which
is seen in Figures 2 and 3, to name a few. The arc furnace on
the western unit from January 2017 to 2018 results reveal a
low MTTR of 0.1 (1 hour) and high availability peaking at
91,36%. This, however, changes from January 2018 to 2021,
and the MTTR gravitates to a higher outcome of 1,8 (1 day
and 8 hours), and the availability drops to the lowest of 26.83
in September 2018. Similarly, the same trend is seen on arc
furnace 141 A on the eastern side unit. The proportionality rate
is also evident in all the other equipment, as when the
availability increases, the MTTR reduces. From Equation 1 of
inherent availability, the sum of MTTR and MTBEF is directly
proportional to the availability, thus the above observation.

5.1.2 MTBF and Number of Failures

Figures 4 and 7, to name a few, show the relationship
between the number of failures and the MTBF. Though the
MTBEF is calculated using the 12-month rolling average, the
graph is lagging compared to the failure rate. It is seen that
they are directionally proportional to each other. The highest
number of failures reaches two for the arc furnace, whilst the
lowest is 0,5. The highest MTBF slowly declined between
July 2018 and January 2019.

This trend is similar to that seen in Figure 4 for the casting
machine; as the failure rate peaks soon after 12 months, the
MTBEF drops. Going back to the definition of MTBF according
to ONDIEKI's (2008) study, MTBF is the mean value of the
length of time between consecutive failures (computed as the
ratio of the total cumulative observed time to the total number
of failures) for a stated period in the life of an item. In simple
terms, this is the inverse of the failure rate; thus, as the failure
rate increases, the MTBF decreases.

5.1.3. Maintenance Cost and MTTR

From the obtained data, the maintenance cost was traced,
but it is inconsistent. There is a relationship between the
MTTR rate and maintenance costs, as seen in Figures 26 and
29 and Figures 30 and 33, to name a few. It is noted that when
the MTTR is high, the maintenance cost increases. However,
this is different from the arc furnace, which has a higher
maintenance cost than all the equipment. The peak is seen
from May 2018, which decreased after the period. ONDIEKI's
(2008) study suggests that maintainability features, such as
Mean Time To Repair (MTTR), influence maintenance costs,
such as required manpower. This simply means that as the
MTTR increases, the maintenance cost increases directly.

5.2. Overall Performance of the Plant

Using the equipment data extracted and analyzed, the key
performance indicators were identified. Using the hypothesis
test derived by MBOHWA's (2016) study, as in Appendix 2,
Tables 1 and 2 were developed. Similarly, according to
MBOHWA (2016), the four key performance indicators are
used. With that said, the data extracted is from a period of a 4-
year; thus, the average of each factor was concluded in the
following tables.

Table 1. Theoretical distribution results for Western Unit 004

Asset Plant utilization Plant availability average MTTR (hourly) Maintenance cost sum
. ° average over 4 . °
equipment averages over 4 years over 4 years % years variation over 4 years %

AF-141 86.57 51.17 8 8.82 underbudget
CM-141 98.8 95,01 4 24.31 overbudget
CVv-101 99.01 98.57 1 11.4 underbudget
KN-101-R1 97.53 73.81 24 31,31 overbudget
GM-141 96.37 90.87 3 3.69 underbudget
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Table 2. Theoretical distribution results for Eastern Unit 204

Asset Plant utilization Plant availability MTTR (hourly) Maintenance cost sum
equipment average over 4 years | average over 4 years | average over 4 years variation over 4 years %
AF-141A 92.32 56.28 9 16.07 underbudget
AF-141B 94.72 69.02 9 10.52 underbudget
CM-141 97.17 72.83 24 17.23 overbudget
CV-101 97.81 86.51 9 3.27 overbudget
CV-201 98.41 95.38 2 1.72 underbudget
KN-101A 96.97 77.35 9 18.38 overbudget
KN-101B 97.77 88.08 5 7.65 overbudget
GM-141 95.35 81.72 4 8.08 overbudget

The obtained calculations clearly showed that much of the
plant utilization per equipment is effectively utilized.
However, the arc furnace on the western unit is underutilized.
The plant utilization on the western arc furnace is significantly
low, reaching an average of 86.57%, which is lower than 90%.
Thus, in relation to the hypothesis test for proportion
developed, the researchers concluded that the maintenance
strategy employed on the arc furnace displayed that the
maintenance strategy employed is not effective.

Further analysis of the output availability showed the
ineffective availability of the arc furnace and the Kiln on the
western side. Likewise, low availability percentage results are
obtained on the eastern side, including the arc furnace, casting
machine, kiln, ball mill, and conveyor belt 101, indicating a
low availability utilization pattern. What is seen from the
results is that the western unit has more equipment available
than the eastern unit, which has more similar equipment.

The MTTR average is more than one hour/breakdown in
the observed period for each machine. Almost all the
equipment, except for the conveyor belt on the western unit,
took an average of 1 hour to repair. The highest MTTR ratio
is the Kiln on the western side and the casting machine on the
eastern side, as they both have an average of 24 hours MTTR
in the 4-year interval. The maintenance cost average has also
been calculated, and the western unit has two pieces of
equipment that are over budget: the casting machine and the
kiln. On the other hand, equipment in the eastern unit that is
over the planned budget is the casting machine, the conveyor
belt 101, Kiln A and B, and the Ball mill.
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6. Conclusion of Results

Based on the hypothesis test performed to obtain the
overall performance of the plant. The plant utilization is above
the prescribed parameter of 90%. All 12 pieces of equipment
had utilization results above 90% except for the arc furnace on
the western unit, which resulted in 86.57%. This is due to plant
operations, which allow equipment to be serviced without
interruptions to production, as a spare catalyst is stored.
However, the availability percentage shows a significant
effect, as 9 out of 13 pieces of equipment have a low
availability percentage compared to the 90% effectiveness
parameter. It is also seen that the mean time to repair for 12
pieces of equipment is more than the 1-hour repair time ratio.
This concludes that though the plant is utilized effectively, the
availability and MTTR ratio of the equipment are ineffective
within the unit.
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Fig. 2 004AF-141 Arc Furnace MTTR graph
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Eastern Unit (U204)

204AF-141A (Arc Furnace)
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204CV-101 (Conveyor Belt)
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204KN-101A (Kiln A)
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Fig. 53 204KN-101B Kiln-B Cost graph

Appendix 2
Hypothesis Development (MBOHWA, 2016)

The researchers developed the following hypothesis tests to explain and interpret the relationship between maintenance
effectiveness evaluation factors and the effectiveness of the maintenance strategies on overall equipment utilization.

Plant Utilization Equipment-Wise
Ho: Not more than 90% is plant utilization equipment-wise in the observed period.
Ha: More than 90% is plant utilization equipment-wise in the observed period.
Ho: P <0.90 not effective
Ha: P >0.90 effective
If the p-value is less than 0=0.05, reject the Null hypothesis.

Plant Availability, Equipment-Wise
Ho: Not more than 90% is plant availability equipment-wise for production in the period.
Ha: More than 90% is plant availability, equipment-wise, for production in the period.
Ho: P <0.90 not effective
Ha: P > 0.90 effective
If the p-value is less than 0=0.05, reject the Null hypothesis.
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Maintenance Cost/Lost Sales due to Downtime
Ho: The maintenance cost is more than 10% of the budgeted total revenue in the period.
H.: Maintenance cost is less than 10% of the total budgeted revenue in the period.
Ho: P > 0.10 not effective
Ha: P <0.10 effective
If the p-value is less than a=0.05, reject the Null hypothesis.

Mean Time To Repair (MTTR)
Ho: MTTR is more than one hour/breakdown in the observed period for each machine.
Ha: MTTR is less than one hour/breakdown in the observed period for each machine.
Ho: n> 1 hour not effective
Ha: < 1 hour effective
If the p-value is less than a=0.05, reject the Null hypothesis.

In this research paper, the plant utilization for the company was set at the level of 90% or above, plant availability was set
at the level of 90% or above, and the cost of maintenance/lost sales due to downtime was set at 10% or less.
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