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Abstract - Cardiovascular Diseases (CVDs) are considered to be the predominant cause of the increase in death rates around 

the world. Hence, early detection is mandatory for managing and providing the affected persons with effective treatment. 

Normally, capturing complex patterns in medical data is much more difficult with the help of traditional machine learning 

methods. Although it is more effective, it is not able to handle the uncertainty and non-linearity problem that exists in the 

patient’s health metrics. In this study, a novel approach called Fuzzy-Enhanced CLSTM is proposed for heart disease 

prediction. This novel approach integrates Multilayer Fuzzy-based Convolutional Neural Networks (MFCNN) in correlation 

with the Bidirectional Long Short-Term Memory (BiLSTM) model. In this method, the fuzzy logic is leveraged to enhance the 

feature extraction process of CNN by making it more robust in dealing with imprecise and uncertain data. Including 

fuzzification will enhance the sensitivity to a certain extent by supporting the critical variations in the clinical parameters. 

Combining convolutional neural networks with the BiLSTM will capture the temporal dependencies in sequential data, 

enabling a more comprehensive understanding of patient history and trends over time. Hence, this model is suitable for both 

spatial feature extraction and temporal analysis. Fine-tuning of the model is performed using an Adaptive Stochastic Gradient 

Descent (ASGD) optimizer, which dynamically adjusts the learning rate during training. This helps faster convergence and 

prevents the model from getting stuck in local minima by improving overall prediction accuracy. The experimental results 

conducted by using publicly available datasets provide significant improvement in early and accurate heart disease detection 

and prediction by providing better accuracy and generalization compared to other traditional Methods. 

Keywords - Heart disease prediction, Cardiovascular diseases, Fuzzy-based CNN, Adaptive stochastic gradient descent, 

BiLSTM, Deep learning. 

1. Introduction 
Cardiovascular disease remains a prominent global 

health issue, resulting in a substantial number of deaths each 

year. Having access to various large datasets about 

healthcare and fine-tuning the methods of machine learning 

that are more recent and sophisticated offer the opportunity 

to enhance the precision of cardiac disease diagnoses [1]. 

Over the course of 2019, the World Health Organisation 

(WHO) reported that 18.6 million people around the world 

passed away as a direct result of heart disease. The number 

of lives lost due to cardiovascular disease is greater than that 

of any other single cause worldwide [2]. There is a need to 

detect the patient’s condition in the early stages, and to 

reduce mortality rates, an accurate prognosis is needed to 

detect heart disease at the earlier stages. Considering these 

factors, there is insufficient information about the patient’s 

risk conditions, and it is mandatory to check with appropriate 

methodologies. Machine learning is used to analyze 

complicated medical data taken in large quantities. This will 

help to identify the patterns that the traditional methods can’t 

do [3]. Some examples of the types of datasets that can be 

analyzed by these methods include electrocardiograms 

(ECGs), medical images, patient histories, and laboratory 

results. These datasets contain a lot of information that 

assists the healthcare department professionals in researching 

the specified area using machine learning models and 

increasing the accuracy of predictions. From machine 

learning models, the supervised learning algorithm is the 

only approach commonly used for predicting cardiovascular 

disease [4]. The dynamic and complex patterns that can be 

found in medical data are beyond the capabilities of 

supervised learning models, even though these models show 

promising methods that place a primary emphasis on 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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sequential decision-making as the primary methodology. The 

optimization of a cumulative reward signal is accomplished 

by reinforcement learning agents through a series of 

decisions [5]. This model has been successfully implemented 

in various fields, including gaming, robotics, and 

recommendation systems. In the field of medicine, 

reinforcement learning is supported in the analysis and 

prediction of various forms of the disease since it has the 

maximum potential to enhance the prediction efficiency in 

various protocols used for treating CVD patients with the 

support of new medical interventions [6]. The improvement 

is made possible with the possible prediction phenomenon by 

using reinforcement learning with better strategy by taking 

the sensitive details of the patients by analyzing their 

responses in correlation with the useful decisions.  

This could be possible by the implication of the hybrid 

methodology for both prediction and classification. 

Nowadays, data augmentation is a widely used methodology 

for CVD prediction with the help of natural language 

processing and computer vision technologies [7]. When 

providing patients with individualized healthcare, 

reinforcement learning models are an excellent option to 

consider. This is because of its decision-making effectiveness 

and adaptability capabilities. The diversity of the training 

data is being increased to make the models more accurate. 

Normally, data augmentation is used to enhance the data 

related to healthcare by creating fictitious data points that 

look like the actual patient data. The problem with the 

imbalanced datasets, scarcity, and privacy-related issues are 

resolved by using this approach [8]. By incorporating 

artificial data into the training dataset, machine learning 

models can enhance their capacity to identify patterns and 

characteristics.  

The problem in the accurate prediction of cardiovascular 

disease significantly impacts the health of the general 

population and the quality of care provided to patients. This 

happens because of the increase in the number of 

cardiovascular disease-affected patients worldwide, which is 

considered to be a major concern in terms of global health. 

Comparing the large datasets obtained from the healthcare 

industry with state-of-the-art machine learning techniques 

may improve the prediction of cardiovascular diseases [9]. 

Conventional risk assessment techniques typically consider a 

patient’s age, gender, and lifestyle choices, among other 

demographic data; nevertheless, it is possible that these 

factors are not at all relevant. Therefore, it is crucial to 

identify the patterns disregarded by conventional methods to 

obtain a dependable prognosis. This is because medical data 

is extremely complex, and dealing with such data is difficult. 

Machine learning [10] makes it possible to analyze highly 

complex medical data and recognize patterns essential for 

accurate disease prediction. Diseases of the cardiovascular 

system, arrhythmias, and heart failure are all examples of 

conditions that should be considered under this umbrella. It 

is difficult to make reliable predictions about cardiovascular 

disease because of the gathering of variables that can 

influence the condition [11]. The flexibility of reinforcement 

learning algorithms is an important consideration in our 

expedition for greater precision. These algorithms must 

improve and modify their prediction models for fluctuating 

patient data [12]. These innovative methods combine 

reinforcement learning with normal data augmentation 

techniques by increasing the accuracy of predictions 

regarding heart disease. 

2. Related Works 
In recent years, there has been a notable rise in machine 

learning and artificial intelligence use to predict medical 

issues. Various analyses are made in medical data to 

determine how well these methods work in bringing attention 

to diagnosing various heart diseases accurately and faster. 

This is achieved by comparing the different algorithms and 

their effectiveness in detecting potentially dangerous heart 

conditions. The work [13] examines several different models 

concerning their ability to forecast the probability of 

occurrence of cardiac problems. To improve the accuracy of 

the predictive models designed for cardiac problems, it is 

necessary to use different machine-learning approaches. 

 The study [14] explores possible ways to evaluate the 

efficiency of detection and prediction by using these 

algorithms to manage medical data and facilitate accurate 

diagnosis. Using data mining techniques to recognize 

significant patterns in patient records is important, which 

could result in improved early warning signs of 

cardiovascular problems. By employing strategies driven by 

data, the research brings about improvements in patient care 

and sheds light on predictive modeling for hospital 

readmissions [15]. In order to make the most of a limited 

dataset, it is necessary to supplement it with every 

conceivable combination of input features.  

Through the use of the Mix-up augmentation method, it 

was suggested that the model’s capacity to generalize could 

be improved. The creation of synthetic training examples 

from pairs of input samples and their labels is accomplished 

through linear interpolation in this method [16]. Through the 

process of combining image patches, the Cutout method was 

enhanced, which in turn promoted the learning of models 

from composite samples, resulting in improvements in both 

localization and classification. The Auto Augment algorithm 

was developed to reduce the amount of required human 

intervention. It identifies effective data augmentation policies 

on its own through autonomous means. The study [17] 

provides an investigation into the various methods of data 

enhancement for super-resolution images was carried out, 

and a novel approach to graphic enhancement was suggested. 

The various analyses of the literature are shown in Table 1. 
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Table 1. Review of literature 

Author Methodologies Used Advantages Limitations 

Saranya et al. 

[18] 

ML classification, feature 

optimization with sensitivity 

analysis. 

Enhanced feature selection and 

improved prediction accuracy 

(98.45%). 

Limited testing on diverse 

datasets. 

Revathi et al. 

[19] 

Optimized LSTM using Salp 

Swarm Algorithm and Genetic 

Algorithm. 

High accuracy (97.11%), efficient 

feature elimination. 

It may require extensive 

computational resources. 

Darolia et al. 

[20] 

LSTM combined with 

Quantum Neural Networks 

(QNN). 

High prediction accuracy due to 

dimensionality reduction techniques 

and robustness. 

Complex model structure 

requiring advanced tuning for 

specific datasets. 

Oyewola et 

al. [21] 

Ensemble deep learning using 

the Kaggle dataset. 

High accuracy (98.45%), improved 

interpretability, and real-time 

diagnostic capabilities. 

Dependence on pre-existing 

data, challenges with real-world 

data generalization. 

Ramkumar et 

al. [22] 

CNN-RNN architecture using 

IoMT data (e.g., pulse 

oximeters, ECG). 

Real-time monitoring and high 

precision in continuous patient 

monitoring. 

Limited scope in healthcare 

settings lacking IoT 

infrastructure. 

Akhtar et al. 

[23] 

Ensemble DL models, feature 

fusion. 

Superior prediction accuracy through 

combining multiple models. 

Computationally intensive and 

risk of overfitting. 

 
The study [24] explains how Natural Language 

Processing (NLP) models can be made more resilient and 

generalizable through the use of data augmentation. The 

integration of multiple data augmentations is for improving 

the robustness of models and the assessment of uncertainty. 

These methods give us information about how to make more 

reliable and useful models in a wide range of situations. This 

study [25] describes recent developments, a discussion of 

obstacles, and opportunities for deep learning approaches to 

identify imbalanced data by examining the data 

augmentation techniques that are tailored to the detection of 

small objects, particularly when dealing with circumstances 

in which the objects being detected are of a small size. This 

study [26] provides various data augmentation techniques 

that utilize deep learning algorithms for the purpose of audio 

classification.  

This study [27] investigates various techniques for 

improving data developed specifically to train recurrent 

neural networks for voice recognition devices. In order to 

improve the classification of endoscopic images, this work 

investigates data augmentation techniques. It provides a 

summary of the methodologies that are currently in use, as 

well as the impacts that they have. In the study [28], various 

data augmentation techniques are investigated within the 

context of autonomous vehicles. The study [29] also 

investigates how these techniques can be utilized to enhance 

the precision of sensor data that is utilized by autonomous 

driving systems. In order to improve investment strategies 

and address challenges in the financial sector, the author [30] 

presented a framework for deep reinforcement learning that 

uses RL methodologies. One of the most important aspects 

of the framework is the management of financial portfolios. 

The study demonstrates the possibility of deep reinforcement 

learning in the field of personalized medicine by 

demonstrating its ability to improve treatment decisions 

through the utilization of data obtained from medical 

registries. The dynamic treatment regimens are the primary 

focus of the research being conducted so far. The study [31] 

provides a deep Q-learning method that improves 

autonomous agents' decision-making capabilities by utilizing 

experiential learning. The method focuses on autonomous 

systems. The deep reinforcement learning algorithm [32] also 

provides possible ways to support the application of robotic 

radiation adaptation to treat lung cancer. This investigation is 

driven by the desire to improve patient outcomes by refining 

treatment regimens, which is the driving force behind this 

investigation. Both the benefits and drawbacks of 

implementing Deep Reinforcement Learning (DRL) in 

healthcare settings are discussed in this study.  

The study [33] proposed a framework that employs deep 

reinforcement learning to achieve two objectives, namely, 

improving hemodynamic interventions and patient outcomes 

in critical care settings. According to the study findings, 

patients experiencing septic shock may be able to find 

individualized and flexible treatment options with DRL. The 

research in [34] examines the ways in which the staff of 

intensive care units is utilizing reinforcement learning 

algorithms to develop individualized treatment plans for 

patients who are critically ill and suffering from sepsis. The 

authors present a model that makes use of reinforcement 

learning to develop individualized treatment plans for 

patients. The purpose of this model is to improve the 

efficiency of interventions that are carried out in the 

intensive care unit. The study [35] provides a model that 

considers patient feedback for ventilation setting adjustments 

in order to accomplish this goal. Consider the example 

mentioned in large-scale medical research projects, which 

started with the aim of making the prediction more accurate, 

precise, and unique. The programs implemented in intensive 

care units might include both diagnostics and interventions. 
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This study demonstrates how reinforcement learning can 

improve mechanical ventilation techniques. The objective of 

this study is to improve the prediction outcome of the patient.  

The data augmentation and reinforcement learning 

algorithm is used to solve the problems created in 

understanding cardiac health data. Traditional machine 

learning algorithms are unsuitable for predicting the complex 

patterns and non-linear correlations associated with medical 

data [36]. Data augmentation aims to improve the dataset by 

adding more examples from a larger variety of 

classifications. Models will be able to produce 

representations that are more thorough as a result. Applying 

fuzzy logic and reinforcement learning leads to 

enhancements in the capacity for sequential decision-making 

and easier adaptation to the dynamic field of heart health 

development [37-39]. The main objective of this integration, 

which seeks to enhance patient outcomes, is to increase 

prediction accuracy.  

3. Proposed Methodology 
The proposed method integrates an FCNN, which is 

used for feature extraction, a BiLSTM network, which is 

used for sequential data analysis, and an Adaptive Stochastic 

Gradient Descent (ASGD) for fine-tuning. The architecture 

of the proposed CLSTM approach with ASGD is illustrated 

in Figure 1. The input consists of patient health records, 

which include various clinical parameters (e.g., age, 

cholesterol level, blood pressure, etc.) taken from the dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Architecture of the CLSTM-ASGD system 
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3.1. Dataset Description 

The total dataset taken for the analysis is 90,000 (patient 

data), which includes 11 different features. The dataset is 

taken from https://www.kaggle.com/datasets/sulianova/ 

cardiovascular-disease-dataset/ data. In total, three various 

types of input features are taken for analysis. Initially, factual 

information is taken, then the information from the medical 

examination results is considered, and finally, the patient’s 

related information is collected manually from direct 

analysis. The features taken are shown in Table 2. All the 

data have objective features, examination features, and 

subjective features. Age, height, and gender are objective 

features, cholesterol glucose are examination features, and 

smoke alcohol are subjective features.  

The clinical parameters (features) and their considered 

ranges are explained in Table 2. The input data is then 

subjected to preprocessing, ensuring the raw medical data is 

clean, transformed, and prepared to extract meaningful 

patterns. The input data are taken and are considered as 
I={𝑎1,a2,...,a𝑛}where ai represents the ith feature of the 

patient record. The input layer also contains a fuzzification 

layer, which transforms the crisp input values into fuzzy 

values to handle uncertainties and improve feature 

representation. Both a training dataset as well as a testing 

dataset have been created from the data. The output from the 

data splitter is then passed to the MFCNN for further 

processing. 

Table 2. Dataset details 

S.No Clinical Parameters Feature Type Range of Values 

1 Age Objective 18-60 years 

2 Height Objective 140-178 CMs 

3 Weight Objective 50-120 Kgs 

4 Gender Objective Male: 0 & Female: 1 

5 Systolic blood pressure Examination 90-160 

6 Diastolic blood pressure Examination 60-100 

7 Cholesterol Examination 1-Normal; 2-Above normal; 3-Good 

8 Glucose Examination 1-Normal; 2-Above normal; 3-Good 

9 Smoking Subjective Yes-1 & No-0 

10 Alcohol consumption Subjective Yes-1 & No-0 

11 Physical activity Subjective Yes-1 & No-0 
 

3.2. Feature Extraction Using MFCNN 

The fuzzy logic is incorporated into the CNN to handle 

the uncertainties in the obtained medical data. Here, for each 

instance of input feature ai, fuzzification is applied to 

transform the crisp values into fuzzy values. The fuzzy 

membership degree function is represented as, 

Membership Function, M=mA(ai)+mB(ai) 

M=
1

1+(
ai-ηA
wA

)
2 +

1

1+(
ai-ηB
wB

)
2       (1) 

Where M is considered the membership function and 

(mA, mB) is represented as the membership degree of ai 

when fuzzy sets A and B are considered, one for spatial 

features and another for temporal features. The center of the 

fuzzy set is marked to be η, and the two sides of the center 

are represented with (wA, wB), which mentions the 

corresponding width of the dataset. CNN extracts spatial 

features in addition to temporal features from fuzzified input 

data through a series of modified convolutional layers 

followed by activation and pooling layers. Here, multilayer 

CNN is used, and it will take the fuzzified input and apply 

convolution operation to extract the special features and 

temporal features. The convolution of the input data with the 

corresponding filters is expressed as, 

Zi,j
(k)

= ∫ [∑ Wm
(k)

. χ
i+m−1

+ ∑ Wn
(k)

. χ
j+n−1

N
n=1

M
m=1 ]

10

k=1
+

b(k)(x) (2) 

Where 
(k)

i,jZ is represented as the obtained output of the 

feature map of the kth filter, and then the filter weight for the 

kth filter at various positions (m,n) is found to be (
(k)

mW , 

(k)

nW ). The input for the convolution layer is represented to 

be i,j .  

In addition, with the normal terms, the bias terms are to 

be considered for the kth filter and it is mentioned as 
(k)b (x)

. The output obtained from the convolutional layer is then fed 

to the activation unit. Here, the ReLU (Rectified Linear Unit) 

is considered to be the activation function, and it is given as 

f(x)=max(0,τ) (3) 

Where the pooling layer present in the CNN will reduce 

the spatial dimensions. Here, Max pooling is used and will 

focus on the most relevant features for determining the 

spatial and temporal features. 

3.3. BiLSTM for Sequential Analysis 

The output from the CNN layers is the extracted 

features, which will be in both spatial and temporal form and 

fed into the BiLSTM network. BiLSTM will process the 

sequential data in both directions (Forward and Backward). 

The usage of BiLSTM will determine the dependencies in 

https://www.kaggle.com/
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both directions. Hence, it is more suitable for interpreting the 

time-series data. Since BiLSTM will consider both the past 

(forward) and future (backward) information and hence can 

be suitable for diagnosis and prognosis. Normally, past 

issues in health may be the cause for the current critical 

issues, so BiLSTM provides a useful way to determine the 

long-term dependencies. By using this method, the 

progression of heart disease based on historical data and 

short-term fluctuations is analyzed with better understanding. 

A total of four levels of operations are formulated in the 

BiLSTM analysis, and they are Input gate (Ig), forget gate 

(fg), Cell state (Cs), Cell state Update (Cs(u)), Output gate 

(Og) and Hidden State (Hs). For capturing the long-term 

dependencies in the overall sequences, the BiLSTM will 

decide which parts of the previous cell state should be 

retained or discarded. This was represented by the forget gate 

(fg) and was mathematically expressed as, 

fg = σ ∑ (Wf. [ht−1, xt] + bf(x))
n
t=1          (4) 

Where Wf is the weight matrices, and ht is the hidden 

state approximately taken at time t, and bf is considered to be 

the bias terms. The Input Gate (Ig) provided in the algorithm 

will decide which parts of the new information to store in the 

cell state. This was mathematically expressed as, 

 Ig = σ ∑ ∑ (Wi. [ht−1, xt]
τ + bi(x))

m
τ=1

n
t=0   (5) 

The corresponding sigmoid function is represented as σ. 

The cell state (Cs) is continuously updated based on the 

number of iterations done in between the forget gate and the 

input gate and is expressed as, 

Cs = ∑ (ft. Cs−1 + it. C̃s)
l
t=1  (6) 

Due to the continuous iteration, the cell state is being 

updated. To generate this update, the values that were 

obtained from the current input, as well as the output of the 

hidden state that came before it, are utilized. This is 

mathematically expressed as, 

C̃s(u) = tanh(Wc. [hs−1, xs] + bc) (7) 

Then, the output is determined after continuous iteration, 

and the main part, which corresponds to the cell state, is 

processed as the output and is mathematically expressed as, 

Og = σ ∑ (Wo. [ht−1, xt] + bo(x))
n
t=1  (8) 

The LSTM cell’s final output, computed by filtering the 

cell state through the output gate, is processed after the 

inclusion of the hidden parameters, and the hidden state is 

expressed as, 

Hs = Og ∗ tanh( Cs(u)) (9) 

The BiLSTM works by processing the future content 

and the past context. Hence, two layers are used for 

processing both in the forward and backward direction to get 

the final predicted results. Normally, the patient data can 

often include sequential information, such as periodic check-

ups, test results, or medication changes. The BiLSTM 

processes this sequence both forward and backwards, 

enabling it to capture complex temporal relationships that 

might indicate the progression of heart disease. The forward 

layer in BiLSTM processes the input sequence 

 1 2, ,..., TX a a a=
 from t=1 to t=T, where T is obtained 

as the total number of time steps, which is mathematically 

expressed as, 

H⃗⃗ s = BiLSTM(xt, h⃗ t−1) + BiLSTM(xt, h⃗ t+1)  (10) 

The combined output from the forward and backward 

LSTMs gives a richer understanding of the temporal 

dependencies, improving prediction accuracy. After the 

BiLSTM layer, the combined hidden states from both 

directions are typically passed through a fully connected 

(dense) layer. The output layer output is expressed as, 

y(n) = σ(Wd. HS
BiLSTM + bd(x)) (11) 

Where Wd is the weight matrix for the dense layer. 
BiLSTM

SH  is given as the final step output (after continuous 

iterations), and bd is the bias term. The BiLSTM can model 

the sequential nature of medical data, capturing both short-

term fluctuations and long-term trends that influence heart 

disease outcomes. By analyzing both past and future 

contexts, the model gains a comprehensive understanding of 

how health indicators evolve over time. Sequential modeling 

with BiLSTM can uncover subtle patterns in the progression 

of heart disease that might be missed by traditional models, 

leading to more accurate predictions. 

3.4. Adaptive Stochastic Gradient Descent (ASGD) 

The obtained results after BiLSTM are processed again 

through the fine-tuning process. The fine-tuning of the model 

is done by using ASGD. It normally adjusts the value of the 

learning rate dynamically depending upon the gradient 

history by improving the convergence speed and also 

prevents overfitting. The weight update rule is 

mathematically represented as, 

 ∑ θt+1 = ∑ [θt(x) − η
t
θtψt

Rt(θt) + β(x)χ(t)]1
t=0

n
t=1  (12) 

Where Θt is the model parameters considered in real-

time (i.e., for time t) and ηt is the model learning rate at 

different time intervals, t. In addition, with this, the loss 

function is represented as J(θt), and the corresponding 

gradient in association with the loss function is represented 

as 
( )t tR 

 with respect to the other parameters, and β(x) is 

the variation with respect to time. In ASGD, to modify the 

learning rate, the variance of the gradients is utilized. It is 

mathematically expressed as, 
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η
t+1

= ∑ [
η0

1+α.t
]n

t=0  (13) 

Where η0 is marked to be the initial learning rate, the 

decay factor is represented as α, and t is the steps determined 

during each iteration. The proposed model uses binary cross 

entropy function as the loss function, and hence it supports 

optimization function as represented as, 

Lce = −
1

N
∑ [yi log2( Xpi) + N(x)]n

i=1 + ∑ [(1 −m
j=1

Xyj) log2( 1 − Xpj) + N(x)] (14) 

Where N is the number of Samples for each interval and 

is mentioned as N(x), Yi is the true label for the ith sample, 

when included, X will add real-time feasibilities for 

prediction, and Pi is the predicted probability for the ith 

sample. For each mini-batch of training data, perform a 

forward pass, compute loss, and calculate the gradients 

through backpropagation. Repeat the process with randomly 

selected mini-batches to compute gradients and update 

weights. Reducing the learning rate over time prevents 

overshooting and helps the model settle in a good solution 

space. 

4. Results and Discussion 
Python is used to implement the proposed heart disease 

prediction model using a combination of an FCNN and 

BiLSTM. The experimentation is done by using Python 3.6, 

TensorFlow 2.2.0, Keras 2.3.1, NumPy 1.18.5, Pandas 1.0.5, 

SciPy 1.4.1, scikit-learn 0.22.2, Matplotlib 3.2.2, Fuzzy 

Logic Library (scikit-fuzzy 0.4), and CUDA Toolkit 10.1. 

The development setup consists of Intel Core i7 (10th 

generation), 64GB with Ubuntu 20.04 operation system. The 

dataset contains information about the ages and genders of 

patients, as well as their blood pressure, cholesterol levels, 

and other clinical markers relevant to cardiovascular disease. 

There is a binary target variable that indicates whether or not 

cardiopulmonary disease is present in the individual. The 

overall dataset is split into training, testing, and validation, as 

shown in Table 3.The preprocessing stage is crucial for 

transforming raw data into a clean and structured format 

ready to be used by the model. The various steps, such as 

handling missing values, normalization, dimensionality 

reduction, and fuzzification, are involved in the 

preprocessing stage. Table 4 illustrates in detail the missing 

values before and after the model's implication. 

Table 3. Dataset splitting 

Parameters Training Testing Validation 

Age 50 60 80 

Height 65 75 103 

Weight 68 78 107 

Gender 54 64 86 

Systolic blood pressure 45 55 73 

Diastolic blood pressure 45 55 73 

Cholesterol 70 80 110 

Glucose 57 67 91 

Smoking 20 30 35 

Alcohol consumption 30 40 50 

Physical activity 10 20 20 

Total 514 624 826 
 

Table 4. Missing values (Before and after implication of the proposed system) and normalization results 

Features 
Missing Values Normalization 

Before After Original Normalized 

Age 0 0 50 0.65 

Height 4 0 65 0.76 

Weight 6 0 68 0.76 

Gender 2 0 54 0.62 

Systolic blood pressure 7 0 45 0.53 

Diastolic blood pressure 8 0 45 0.56 

Cholesterol 6 0 70 0.74 

Glucose 3 0 57 0.65 

Smoking 6 0 20 0.34 

Alcohol consumption 2 0 30 0.36 

Physical activity 4 0 10 0.21 
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Normalization was performed using Min-Max scaling, 

transforming all continuous features to a range of [0, 1] to 

ensure that features are on a similar scale, which aids the 

model’s convergence during training.  

Figure 2 shows the distribution of clinical features after 

normalization, indicating that all features are within the [0, 1] 

range. Normalization improved the uniformity across 

features and allowed the model to train more efficiently by 

ensuring that larger magnitude features did not dominate 

smaller ones. Then, Fuzzification was applied to introduce 

uncertainty into the input features, making the model robust 

to minor variations and imprecision in clinical 

measurements. The fuzzification process transformed crisp 

values into fuzzy sets using linguistic variables (e.g., low, 

medium, high). This is shown in Table 5. 

 
Fig. 2 Graph representing before and after normalization 

Table 5. Fuzzified inputs for each feature 

Features Original Value 
Fuzzified Values 

(Low, Medium, High) 

Age 50 (0.1,1.0,0.1) 

Height 65 (0.2,0.4,1.0) 

Weight 68 (0.1,0.7,0.8) 

Gender 54 (0.6,0.4,0.6) 

Systolic blood pressure 45 (0.2,0.9,0.8) 

Diastolic blood pressure 45 (0.4,0.2,0.6) 

Cholesterol 70 (0.3,0.5,0.7) 

Glucose 57 (0.9,0.7,0.5) 

Smoking 20 (0.4,0.5,0.6) 

Alcohol consumption 30 (0.6,0.3,0.5) 

Physical activity 10 (0.7,0.3,0.8) 

 
Figure 3 shows the fuzzy membership functions for 

selected features by visualizing how crisp inputs are 

converted into fuzzy values. Fuzzification added robustness 

by accounting for uncertainty in clinical measurements, 

which is common in real-world medical data. This process 

allowed the MFCNN to learn more generalizable patterns 

from the input data.  

After preprocessing, the class distribution was balanced, 

which ensures the model does not favor one class over 

another. The balance was maintained post-preprocessing, 

with approximately equal representation of heart disease 

cases (positive class) and non-heart disease cases (negative 

class). The distribution of the class after preprocessing is 

illustrated in Figure 4. 
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Fig. 3 Fuzzified Input Membership Functions 

 

Fig. 4 Class distribution pie chart 

Figure 4 shows that the class distribution shows that the 

dataset remains balanced after preprocessing. The proposed 

model’s performance is analyzed deeply through the path of 

accuracy over various epochs in both training and validation 

data. Figure 5 illustrates the accuracy of the proposed model 

in consideration of the epochs. In Figure 5, the accuracy of 

the proposed model with respect to validation is displayed 

over a period of eighty epochs, and the same is also given for 

training. The epochs are displayed along the x-axis, and the 

accuracy percentage is displayed along the y-axis of the 

illustration. Both the training and validation processes are 

improved in terms of accuracy when the number of epochs is 

increased. Nevertheless, there is a slight disparity between 

the two lines, which brings about the possibility that the 

model is becoming overly accustomed to the data it was 

trained on. This phenomenon occurs when a model learns the 

patterns of the training set to the point where it performs 

poorly on new data. This condition is known as “pattern 

learning”. Evaluation of the training and validation losses of 

the proposed model is carried out with the help of the 

features that have been identified, as shown in Figure 6. 
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Fig. 5 Training and validation accuracy (models’ performance) 

 
Fig. 6 Training and validation losses 

Figure 6 illustrates the loss that the proposed model has 

experienced over a period of eighty epochs. There is a clear 

indication that the model is gaining more and more 

knowledge from the data as each epoch goes by, as 

evidenced by the decreasing training and validation losses. 

On the other hand, the training loss continues to decrease, 

whereas the validation loss begins to level off around the 

50th epoch. This leads one to believe that the model may be 

overfitting, which indicates that it is becoming overly 

proficient at learning the patterns in the training set and 

cannot generalize well to new data. 

4.1. Confusion Matrix 

The performance of the model on the test set is 

evaluated by the confusion matrix, which takes into account 

the counts of various sensitive values other than normal 

values. The values taken are true positive information, true 

negative value, and false positive value, and confusion 

occurs over whether it might use these counts. A 

demonstration of the procedure for generating the confusion 

matrix for the test set following training is presented in 

Figure 7. A demonstration of the effectiveness of the 

proposed model for predicting heart disease is provided by 

the confusion matrix, which can be found in Figure 7. On 

one side, we have the actual classes, and on the other side, 

we have the predicted classes, which are displayed on the x-

axis as either positive or negative. Each cell’s figure displays 

the number of instances classified correctly or incorrectly, 

depending on the situation. According to the cell that 

contains the intersection of “Actual Positive” and “Predicted 

Positive,” there were 58 instances in which the positive 

predictions were absolutely accurate predictions. According 

to the matrix, the model demonstrates an impressive level of 

accuracy in predicting heart disease, performing a greater 

number of correct classifications than it does incorrect 

classifications.  

An in-depth analysis of metrics such as recall, precision, 

and F1-score could be carried out to achieve a more 

comprehensive understanding of the model's effectiveness, as 

demonstrated in Table 6. Table 6 provides the evaluation 

metrics that demonstrate the performance of the Fuzzy-

Enhanced CLSTM model in heart disease prediction. The 

identified precision is marked to be 96.47%, and this brings 

out most of the possible cases. Then, the accuracy is 

identified to be 95.17% which is higher when compared to 

the other traditional methods. Following this, the recall rate 

is obtained to be 93.97%, and the number of false negatives 

is reduced compared to the true positives. Finally, the F1-

score value is 94.57%, which enhances the evaluation 

performance of the model. Then, the ROC-AUC score is 

obtained to be 0.97, which indicates the capability of ranking 

the instances accurately. Overall, these metrics suggest that 

the Fuzzy-Enhanced CLSTM model is a promising approach 

for early detection of heart disease, effectively capturing 

complex patterns in medical data and handling uncertainties 

associated with patient health metrics. 

 
Fig. 7 Confusion matrix 
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Table 6. Performance metrics of the proposed model 

Metric Prediction Value 

Accuracy (%) 96.47 

Precision (%) 95.17 

Recall (%) 93.97 

F1-Score 94.57 

ROC-AUC Score 0.97 
 

 
Fig. 8 Precision-recall curve 

 
Fig. 9 Comparative performance with baseline models 

The precision-recall curve is shown in Figure 8. This 

curve (Figure 8) helps to visualize the trade-off between 

precision and recall for various threshold values. A well-

performing model typically exhibits high precision and recall 

simultaneously. Considerably, the proposed model finds a 

better position in terms of precision and recall. When 

compared with the traditional machine learning models, the 

proposed model provides better performance in terms of its 

performance, as illustrated in Figure 9. The proposed model 

outperforms other recent methods in detecting and predicting 

heart disease early and accurately, as shown in Figure 9. The 

proposed model shows different performances by using 

fuzzification and without fuzzification. This is illustrated in 

Figure 10. 

The accuracy and ROC-AUC score are evaluated for 

each model. The results (Figure 10) indicate that the 

proposed model with fuzzification outperforms the CNN + 

BiLSTM model without fuzzification, achieving a higher 

accuracy of 92.5% compared to 89.5% and a higher ROC-

AUC score of 0.93 compared to 0.9. This suggests that the 

incorporation of fuzzification enhances the model’s ability to 

accurately classify instances and discriminate between 

positive and negative classes. Then, the implication of 

adaptive stochastic gradient also has better performance, as 

shown in Figure 11. Figure 11 compares the performance of 

two optimization algorithms, SGD and ASGD, regarding the 

number of epochs required to converge and the training time. 

The obtained experimental results reveal that the ASGD 

converges faster than SGD, reaching convergence in 76 

epochs compared to 110 epochs for SGD. Additionally, 

ASGD requires significantly less training time, completing 

its training in 2.1 hours compared to 4.2 hours for SGD.  

 
Fig. 10 Effect of fuzzification on accuracy and AUC 
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Fig. 11 Training time and epochs for convergence 

This suggests that ASGD is a more efficient 

optimization algorithm for the given model, leading to faster 

convergence and reduced training time. 

5. Conclusion and Future Recommendations 
In this study, a novel Fuzzy-Enhanced CLSTM model is 

proposed that integrates MFCNN along with BiLSTM 

architecture for heart disease prediction. The main goal of 

this work was to make predictions more accurate by dealing 

with the uncertainty and non-linearity that come with patient 

health data. Including fuzzification in the CNN component 

made the model more robust in handling imprecise and 

uncertain data, thereby enhancing its ability to extract critical 

features from complex clinical parameters. Using BiLSTM’s 

temporal modeling features, the model captured 

dependencies that changed over time, giving a complete 

picture of the patient’s history. The combination of temporal 

analysis and spatial feature extraction greatly improves the 

early and accurate detection of heart disease. By using 

Adaptive Stochastic Gradient Descent (ASGD), the training 

speed was increased, and local minima were avoided by 

letting the learning rate change dynamically. Compared to 

other traditional methods, this optimization algorithm must 

make more accurate predictions and work better in more 

situations. The presented model works better than the other 

approaches that were tried before, as shown by the test 

results on datasets that are available to everyone.  

The Fuzzy-Enhanced CLSTM model demonstrated 

enhanced generalization and accuracy, suggesting that it 

could be a valuable application for the early detection and 

prediction of heart disease. As a result of its effective 

training and enhanced sensitivity to critical variations in 

clinical data, this model exhibits potential for the real-time 

diagnosis and monitoring of cardiovascular diseases in 

healthcare settings. Future research will include 

incorporating suitable classification algorithms to enable the 

implementation of an efficient healthcare monitoring system 

for the timely identification of cardiovascular disease. 

Hyperparameter tuning will moreover be done to maximize 

the effectiveness of the presented model in predicting a heart 

attack. The effectiveness of the proposed heart disease 

prediction framework will additionally be enhanced in the 

future by more research into meta-heuristic strategies. 
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