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Abstract - The National Cancer Institute defines histopathological images as the study of diseased cells using a microscope. The 

pathologist investigates the tissue structure, cell tissue distribution, and cell shape regularities and decides on benign and 

malignancy in the image. However, the process is found to be more laborious, time-consuming and highly prone to intra and 

inter-observer variability.  To deal with this gap, in this work, a method called, Moore Penrose Pseudo Inverse and Fully 

Convolution-based Watershed Segmentation (MPPI-FCWS) is proposed. The MPPI-FCWS method is split into two parts, namely 

preprocessing and segmentation. Initially, the raw histology images obtained from breast histopathology images are subjected 

to preprocessing using the Moore–Penrose pseudoinverse matrix. Here, normalization and denoising are performed with the 

objective of identifying metastatic tissue in histopathologic scans of lymph node sections. Second, the process By focusing on the 

artifacts, the error rate involved in analysis can be reduced. Next, the segmentation of tissues is performed using Fully 

Convolution-based Watershed Segmentation that focuses on the separation of the region of interest from background tissues as 

well as the separation of nuclei from cytoplasm, therefore minimizing segmentation error significantly. Experimental evaluation 

of the proposed MPPI-FCWS method and existing methods are carried out with respect to the number of sample images. The 

proposed method carries out the experimental evaluation using factors such as precision, recall, accuracy and error rate. The 

proposed MPPI-FCWS method improved precision and recall by 9% and 31% with a high accuracy rate of 18%. 

Keywords - Histopathological, Moore penrose, Normalization, Pseudo inverse, Fully convolution, Watershed segmentation.

1. Introduction 
As far as histology image analysis for cancer diagnosis is 

concerned, histopathologists investigate the regularities of cell 

shapes and tissue distributions, make efficient decisions about 

whether tissue regions are cancerous and accordingly 

determine the malignancy level manually. Owing to the time-

consuming nature and highly susceptible to both intra and 

inter-observer variability, computer-assisted image analysis is 

required for quantitative diagnosis of tissue. A 

histopathological analysis was carried out with pathologists in 

the diagnosis of breast cancer. Breast Cancer is very 

predominant for women in today's world. Breast cancer is the 

second largest disease, which leads to the death of women. 

The main purpose of breast cancer detection is to identify 

breast abnormalities as early as possible. The time consumed 

for detecting breast cancer remained unaddressed. In order to 

overcome the above issue, a novel proposed method has been 

developed for classifying breast cancer. T-lymphocyte 

detection using deep neural networks was proposed in [1] to 

measure the robustness of marker-labeled lymphocyte 

quantification algorithms based on the number of training 

samples prior to and post being transferred to a new tumor 

indication. Here, the RetinaNet architecture for the task of cell 

segmentation and transfer learning was employed to bridge the 

domain gap between tumor indications and minimize 

annotation costs for unseen domains. Also, to ensure 

automatic cell detection and classification, bounding box 

vertices and class labels were used as annotation databases, 

therefore improving average precision significantly. Despite 

improvements observed in terms of average precision, only 

selected fields of interest were taken into consideration and 

were never exposed to artifacts during training, therefore 

causing significant errors. Deep Learning-based Segmentation 

was presented in [2] for designing an optimized segmentation 

model. Moreover, an annotation workflow was designed with 

minimal interference from pathologists on the basis of H&E 

stained sections. Owing to the reason that immune 

fluorescence (IF) depends heavily on the proteins in target 

cells, different types of morphologies were obtained in an 

optimized manner than human interventions with maximal 

accuracy. However, the supervised segmentation method is 

sensitive to biased errors. In fact, training errors and biased 

errors present major challenges in histology analysis for 

cancer grading. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Peermohamed. A & Sulthan Ibrahim. M / IJETT, 73(5), 173-185, 2025 

174 

Breast cancer is one of the most prevalent malignancies 

in females globally. A certain extent of benign breast disorders 

consist of intraductal papilloma, ductal hyperplasia, adenosis 

and so on. Over recent years, histological examination of 

specimens has traditionally been utilized under light 

microscopy in pathological diagnosis. Both early detection 

and accurate diagnosis with histological segmentation by 

pathologists are essential for pertinent treatments to boost the 

patient’s prognosis rate. In [3], based on a Single Shot 

Multibox Detector (SSD), breast carcinoma detection in an 

automatic fashion was designed.  

This mechanism paid more attention to the accuracy 

aspect. Despite deep learning algorithms achieving an 

excellent performance using breast cancer histopathological 

images, however, they were found to be computationally 

expensive owing to the feature extraction from in-distribution 

images. In [4], deep-learning-based models for classifying 

histopathological images and optimization patterns were 

presented to focus on the computational cost involved in 

analysis using the dataset from [5]. Yet another method on the 

basis of image processing technique was presented in [6] to 

assist pathologists in significantly generating accurate 

diagnoses by first detecting anomalies using the support 

vector machine (ADSVM) and resolution adaptive network 

(RANet) model to perform classification. 

This hybrid mechanism ensured both accuracy and 

computational efficiency. Grading of cancer histopathology 

slides necessitates large numbers of pathologists and expert 

clinicians owing to its time consuming nature to look 

manually into entire slide images. Therefore, an automated 

classification of histopathological breast cancer is required for 

performing both clinical diagnosis and therapeutic responses. 

Over the recent few years, deep learning algorithms for 

medical image analysis have provided a mechanism for using 

automated radiologic imaging classification.  

In [7], a hybrid method utilizing the convolutional neural 

network (CNN) and long short-term memory recurrent neural 

network (LSTM RNN) with the purpose of classifying both 

benign and malignant breast cancer subtypes was presented in 

detail. Also this type of hybrid model resulted in the overall 

performance accuracy in an extensive manner. However, the 

conventional manual diagnosis requires an in-depth workload 

and hence is highly susceptible to diagnostic errors.  

To address this aspect, a breast cancer histopathology 

image classification employing multiple compact CNNs was 

designed [8]. Using this mechanism not only resulted in the 

workload minimization of pathologists but also boosted the 

quality of diagnosis extensively. Yet another fusion of CNN 

employing 1D CNN, 2D CNN and 3D CNN was integrated 

into [9] to focus on the classification performance. In [10], a 

deep grade model focusing on the error aspect employing 

recurrence deep learning was designed. 

1.1. Research Gap 
Currently, several preprocessing, feature selection, and 

classification methods have been introduced to detect the 

tumor. Several research works focused on the precision aspect 

but were unable to concentrate on the accuracy aspect. 

Conventional preprocessing methods were unable to focus on 

the overall error.  Also, certain research works, though paid 

focus to recall, compromised on the error rate consumed in 

cell pattern segmentation with histology analysis for cancer 

grading. The existing methods need to be improved for 

healthcare applications that require precise segmentation 

results. In order to overcome the existing issues, a novel 

MPPI-FCWS segmentation is introduced. 

1.2. Novelty and Contributions of the Work  

• The proposed MPPI-FCWS method is designed to 

improve the cancer detection precision rate with a 

minimal error rate, based on two major processes, namely 

preprocessing and segmentation.  

• The proposed MPPI-FCWS method uses a Statistical 

Nucleic Normalized Moore Penrose Pseudoinverse 

Matrix for performing the preprocessing. The novelty of 

Statistical Nucleic-based Normalization is employed to 

normalize the image according to the nucleus of cell 

shape and size. Innovation of the Moore Penrose function 

for identifying metastatic tissue in histopathologic scans 

of lymph node sections is applied to minimize the error 

rate in an extensive manner.  

• A fully convolution-based watershed segmentation 

algorithm is employed in the proposed MPPI-FCWS 

method for precise cell pattern segmentation with several 

layers.  

• The novelty of the Toeplitz matrix is employed in the 

MPPI-FCWS method uses convolution for transforming 

the image and pooling to facilitate dimensionality 

reduction during kernel size. In this way, precision and 

recall are enhanced.  

•  H-minima transform-based Watershed Segmentation is 

utilized for actual segmentation to provide segmented 

outcomes. Euclidean Distance Transform is employed for 

dividing the region of interest from background tissues 

and separating nuclei from cytoplasm. With this, accuracy 

is increased.  

• A comprehensive experimental assessment is carried out 

with four different types of performance metrics to 

illustrate the MPPI-FCWS method over traditional 

methods. 

2. Related Works 
A fusion DL method was proposed in [11] with the 

purpose of validating the efficiency and effectiveness of 

cancer detection. However, as far as biomedical image 

classification is concerned, acquiring a large training dataset 

is a demanding task that can be significantly controlled by 

transfer learning as it acquires the common features from 
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natural image datasets and can be applied directly to new 

image datasets. In [12], an efficient deep learning-based 

computer-aided method for classifying Oral Squamous Cell 

Carcinoma (OSCC) histopathology images was presented. 

Employing this hybrid method improved the overall precision 

and recall values. Owing to the reason that the manual 

identification procedure is a time-consuming task, it is 

required to design of an automated mechanism for identifying 

cancerous and healthy images. In [13], a fusion of the Owl 

Search Algorithm and DL-Driven Cancer Detection and 

Classification method was designed. Using the fusion 

mechanism resulted in the improvement of overall 

performance.   

A review of deep learning methods in breast cancer 

grading was investigated in [14]. However, with different 

scales of histopathology, image accuracy is also said to be 

compromised. A review of work focusing on three scales of 

histopathology images was detailed in [15]. Though 

histopathological assessment are said to be the entrenched 

yardstick for diagnosing breast cancer, it is hindered by time-

consuming procedures and hence found to be highly prone to 

human errors.  

A novel approach referred to ImageNet-VGG16 (IVNet) 

for real-time diagnosis of breast cancer was presented in [16]. 

Histopathological image analysis in an automatic manner 

provides a promising solution to boost effectiveness and 

diagnosis accuracy. In [17], the challenge of breast cancer 

histopathological image classification by means of ResNet 

architecture, specifically having the advantage of its depth and 

skip connections, was presented. By means of these two 

advantages resulted in the accuracy improvement. A review of 

histologic grading, with the narration of grading 

fundamentals, issues related to reproducibility and a detailed 

discussion on how to enhance reproducibility of grading by 

training to better recognize mitoses was investigated in [18]. 

A novel concept employing instance segmentation and object 

detection for cancer grading was designed in [19]. A detailed 

analysis of human body cancer detection employing ML and 

DL techniques, its diagnosis, cure process was discussed in 

[20]. An extensive study on computer-aided diagnosis 

employing DL for cancer diagnosis in histopathology images 

was investigated in [21]. Yet another review of DL in cancer 

diagnosis was detailed in [22]. A survey of cancer image 

analysis employing supervised DL was presented in [23]. 

Computer-aided grading employing DL for pattern 

classification, focusing on sensitivity, specificity, along with 

accuracy aspects was designed in [24]. Various traditional 

deep-learning for making an in-depth analysis of breast cancer 

histopathological images were proposed in [25]. Also, manual 

annotation is found to be low-resolution, time-consuming and 

highly subjected to observer variance. To address this aspect, 

the H&E Molecular neural network (HEMnet) was designed 

in [26], therefore producing a higher accuracy. Nevertheless, 

several research works show extensive inter-observer 

divergence in breast cancer grading. In [27], deep learning-

based breast cancer grading method. An overview of the DL 

technique focusing on cancer diagnosis and treatment was 

investigated in [28]. 

The CNN-based prediction model was developed in [29] 

for disease diagnosis. However, it failed to achieve greater 

accuracy while handling large amounts of patient data. A 

medical IoT-based diagnostic system was employed [30] to 

determine the difficulty of identifying early-stage breast 

cancer. But, the time was not focused. With the precise 

discovery of cancerous patients, an ensemble learning-based 

voting classifier was developed [31]. Study focused on DL 

techniques in [32] for improving the diagnostic accuracy. 

BCR-HDL (Breast Cancer Recurrence using Hybrid Deep 

Learning) was employed in [33] to predict not only diagnostic 

outcomes. However, the error was not focused. A comparison 

of previous existing methods is illustrated in Table 1.  

Table 1. Comparison of previous existing methods reported in the literature 

Reference No Method Contribution Metris Demerits 

[1] 
Deep neural 

networks 

Deep neural networks were 

introduced with T-lymphocyte 

detection for tumor indication 

Average precision 

was improved 

Accuracy was not 

enhanced 

[2] 
Deep Learning-

based Segmentation 

Deep Learning-based 

Segmentation was employed to 

optimize the segmentation 

model 

Higher accuracy 

Training errors and 

biased errors present 

major challenges 

[3] 
SSD breast 

carcinoma detection 

SSD breast carcinoma detection 

was performed 
Time was lower 

Accuracy was not 

improved 

[4] 
Deep-learning-based 

models 

Deep-learning-based models 

were developed to find 

histopathological images and 

optimization patterns 

Computational 

overhead was 

minimized 

Precision was not 

focused 

[5] 

BReAst Carcinoma 

Subtyping (BRACS) 

dataset 

BReAst Carcinoma Subtyping 

(BRACS) dataset was 

employed for breast cancer 

The false positive rate 

was enhanced 

Accuracy was not 

improved 
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[6] 
Image processing 

technique 

Image processing technique 

was introduced to help 

pathologists 

Enhanced accuracy 

and computational 

efficiency 

Precision was not 

improved 

[7] Hybrid method 

The hybrid method was 

combined with CNN and 

LSTM RNN to determine 

breast cancer subtypes 

Accuracy was 

enhanced 

Diagnostic errors 

were not reduced 

[8] CNNs 

CNNs were designed for breast 

cancer histopathology image 

classification 

Improved recall 

The quality of the 

diagnosis was 

insufficient 

[9] 

Fusion of CNN 

employing 1D CNN, 

2D CNN and 3D 

CNN 

Fusion of CNN employing 1D 

CNN, 2D CNN and 3D CNN 

were combined with 

classification performance. 

Classification 

accuracy was 

improved 

Error was not 

minimized 

[10] Deep grade model 

Deep grade model was 

employed for predicting the 

cancer 

Error was reduced 
Segmentation was not 

performed 

 
As discussed in the above literature, though certain 

research works focused on the accuracy aspect, however paid 

less attention to the precision factor. Also, some other 

literature though focused on the recall aspects involved in 

cancer grading but, paid less attention to the error rate. To 

address these gaps in this work, MPPI-FCWS is proposed. At 

first, the Statistical Nucleic Normalized Moore Penrose 

Pseudoinverse Matrix is utilized for executing normalization 

and denoising to reduce the error rate. Also, the Fully 

Convolution-based Watershed Segmentation algorithm is 

employed via the H-minima transform for analyzing the 

testing and training sample images. The Toeplitz matrix is 

used for transforming the image and pooling to facilitate 

dimensionality reduction. In this way, accuracy, precision, and 

recall are enhanced.  

3. Proposed MPPI-FCWS 

The detection and classification of breast cancer from 

histology images are a demanding task due to the reason that 

an image usually contains many groups and overlapping 

objects. The various stages involved in the proposed 

methodology include normalization and, denoising and 

segmentation of background cells. For the normalization and 

denoising of the breast cancer histology images, the Statistical 

Nucleic Normalized Moore Penrose Pseudoinverse Matrix-

based preprocessing is used, and for the separation of region 

of interest from background tissues as well as separation of 

nuclei from cytoplasm Fully Convolution-based Watershed 

Segmentation is employed. These models are tested on two 

fundamental tissues (cancerous or non-cancerous) of 

randomly selected 1000 breast cancer histology images. 

Finally, the performances of the proposed MPPI-FCWS are 

evaluated using well-known parameters, and from the results 

and analysis, it is observed that the MPPI-FCWS method is 

performing better for the denoised and segmented features. As 

illustrated in Figure 1 to start with the breast histopathology 

images [34] and [35] are acquired as input.  

 
Fig. 1 Flowchart of MPPI-FCWS method 

Second, preprocessing is performed using the Moore–

Penrose Pseudoinverse matrix. Finally, the segmentation of 

tissues is done using Fully Convolution-based Watershed 

Segmentation. The detection and classification of breast 

cancer from histology images are a demanding task due to the 

reason that an image usually contains many groups and 

overlapping objects. The various stages involved in the 

proposed methodology include normalization, denoising and 

segmentation of background cells.  

For the normalization and denoising of the breast cancer 

histology images, the Statistical Nucleic Normalized Moore 

Penrose Pseudoinverse Matrix-based preprocessing is used, 

and for the separation of region of interest from background 

tissues as well as separation of nuclei from cytoplasm Fully 

Convolution-based Watershed Segmentation is employed. 

Breast histopathology images 

Preprocessing  

(Normalization and denoising)  

Segmentation  

(separation of region of interest from background tissues as 

well as separation of nuclei from cytoplasm) 

 Cancerous (IDC) 

 

   Non-cancerous (IDC) 



Peermohamed. A & Sulthan Ibrahim. M / IJETT, 73(5), 173-185, 2025 

177 

These models are tested on two fundamental tissues 

(cancerous or non-cancerous) of randomly selected 1000 

breast cancer histology images.  

Finally, the performances of the proposed MPPI-FCWS 

are evaluated using well-known parameters and from results 

and analysis, it is observed that the MPPI-FCWS method is 

performing better for the denoised and segmented features. A 

detailed description of the MPPI-FCWS method is provided 

in the following sections. 

3.1. Dataset Description  

Breast cancer is the most frequent form of cancer in 

women, and invasive ductal carcinoma (IDC) is the most 

frequent form of breast cancer. Accurately identifying and 

classifying breast cancer subtypes is a significant clinical task.  

The objective of the breast histopathology dataset 

acquired from 

https://www.kaggle.com/code/paultimothymooney/predict-

idc-in-breast-cancer-histology-images is to identify IDC when 

it is present in otherwise unlabeled histopathology images.  

The dataset comprises 277,524 50x50 pixel RGB digital 

image patches that were derived from 162 H&E-stained breast 

histopathology samples. These sample images are small 

patches that were acquired from breast tissue sample digital 

images.  

Moreover, the breast tissue sample digital images 

comprise numerous cells; however, only some of them are 

cancerous. Patches labeled with ‘ ’ include cells that are 

characteristic of invasive ductal carcinoma. 

3.2. Statistical Nucleic Normalized Moore Penrose 

Pseudoinverse Matrix-Based Preprocessing 

The foremost and principal objective of the preprocessing 

is to eliminate a definite degradation, including noise 

reduction or denoising for identifying metastatic tissue in 

histopathologic scans of lymph node sections.  

The breast histopathology images acquired from a 

microscope may be imperfect and lacking in certain aspects 

like poor contrast and uneven staining, and they required to be 

enhanced through a denoising process that, in turn, reduces 

errors and boosts the overall performance based on cell pattern 

with histology analysis for cancer grading.  

MPPI-FCWS method initially performs color 

normalization and denoising for identifying metastatic tissue 

in histopathologic scans of lymph node sections using the 

Moore–Penrose pseudoinverse matrix. By focusing on 

artifacts, the error rate involved in analysis can be reduced. As 

illustrated in Figure 2, with the raw images provided as input, 

the input image is subjected to preprocessing via 

normalization and denoising. 

 
Fig. 2 Based preprocessing model 

Let us consider the breast histopathology sample images 

‘𝑆𝐼’, where ‘𝑆𝐼 ∈ 𝐷𝑆’ obtained from the raw breast 

histopathology dataset as input. The average value indicates 

the centralized tendency of the pixel and is a significant 

amplitude feature of images. Then, for a breast histopathology 

sample image ‘𝑆𝐼’, the average pixel value of each cell pattern 

is mathematically formulated as given below.  

𝑓𝑚𝑒𝑎𝑛 =
1

𝑀𝑁
∑ ∑ 𝑓(𝑝𝑐 , 𝑞𝑐)

𝑁
𝑞𝑐=1

𝑀
𝑝𝑐=1  (1) 

From the above equation (1), ‘𝑓(𝑝𝑐 , 𝑞𝑐)’, represent the 

breast histopathology sample image ‘𝑆𝐼’ pixel value of 

‘𝑝𝑐 , 𝑞𝑐’.  Next, with the obtained average pixel value of each 

cell pattern, Statistical Nucleic-based Normalization is 

performed in this work. Normalization is utilized in 

transforming features in the dataset to a common scale, 

enhancing the overall diagnosis performance and accuracy. 

The main objective of normalization is to discard the potential 

biases and distortions caused by numerous feature scales. For 

breast cancer detection based on cell patterns with histology 

analysis for cancer grading, histopathologists view the 

specific features in the cells and tissue structures. Various 

common features used for breast cancer detection from the 

microscopic biopsy images include cell size, cell shape, nuclei 

shape and size and so on. Mormalization is performed based 

on the nucleus of cell shape and size using Statistical Nucleic-

based Normalization. The cancer cells' nuclei are larger than 

the normal cells and divergence from the centre of the mass 

and hence have to be normalized to discard the possible biases 

and noises caused by different scales of features. This is 

performed using statistical functions as given below. First, the 

nucleus's longest circumference is measured as given below. 

𝑁𝐿𝐶 = 𝑓𝑚𝑒𝑎𝑛[√(𝑝1 − 𝑝2)
2 + (𝑞1 − 𝑞2)

2] (2) 

From the above equation (2), Nucleus Longest 

Circumference, ‘𝑁𝐿𝐶,’ is evaluated based on the endpoints on 

the major axis ‘𝑝1’, ‘𝑝2’, ‘𝑞1’ and ‘𝑞2’ respectively. Second, 

the nucleus's shortest circumference is measured as given 

below.  

Breast 

histopathology 

images 

Statistical Nucleic-based 

Normalization 

Sample images 

Normalized image 

Pseudo-inverse Matrix 

based denoising 

Denoised and preprocessed 

image 

https://www.kaggle.com/code/paultimothymooney/predict-idc-in-breast-cancer-histology-images
https://www.kaggle.com/code/paultimothymooney/predict-idc-in-breast-cancer-histology-images
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𝑁𝑆𝐶 = 𝑓𝑚𝑒𝑎𝑛[√(𝑝2 − 𝑝1)
2 + (𝑞2 − 𝑞1)

2] (3) 

From the above equation (3), the Nucleus's Shortest 

Circumference ‘𝑁𝑆𝐶’ is measured taking into consideration 

the endpoints of the minor axis ‘𝑝2’, ‘𝑝1’, ‘𝑞2’ and ‘𝑞1’ 

respectively. Finally, with the obtained Nucleus Longest 

Circumference and Nucleus Shortest Circumference values, 

the abnormality ‘𝐴𝑏𝑛’ is formulated as given below.  

𝑁𝐼 = 𝐴𝑏𝑛 =
𝑀𝑎𝑗𝑜𝑟𝑎𝑥𝑖𝑠𝐷𝑖𝑠[𝑁𝐿𝐶]

𝑀𝑖𝑛𝑜𝑟𝑎𝑥𝑖𝑠𝐷𝑖𝑠[𝑁𝑆𝐶]
 (4) 

From the above equation (4) normalized results are 

obtained with which denoising is performed using Moore 

Penrose Pseudoinverse Matrix. We initially assume that the 

blurring function or point-spread function ‘ℎ(𝑛1, 𝑛2)’ and the 

image-denoising methods that are described here fall under the 

class of linear equations. Under these conditions the denoising 

process is carried out by means of the Least Square filter. If 

we denote the blur function as ‘ℎ(𝑛1, 𝑛2)’, recorded image or 

the normalized image as ‘𝑁𝐼(𝑛1, 𝑛2)’ then the noise removed 

image ‘𝑁𝑅(𝑛1, 𝑛2)’ is modeled as given below.  

𝑁𝑅(𝑛1, 𝑛2) = ℎ(𝑛1, 𝑛2) ∗ 𝑁𝐼(𝑛1, 𝑛2) (5) 

= ∑ ∑ ℎ(𝑘1, 𝑘2)𝑓(𝑛1 − 𝑘1, 𝑛2 − 𝑘2)
𝑀−1
𝑘2=1

𝑁−1
𝑘1=1  (6) 

From the above equations (5) and (6), the objective of the 

image denoising is to make an estimation ‘𝑁𝐼(𝑛1, 𝑛2)’ of the 

ideal image, under the assumption that only the degraded 

image ‘𝑁𝑅(𝑛1, 𝑛2)’ and the blurring function ‘ℎ(𝑛1, 𝑛2)’ are 

given. This is mathematically formulated along with the 

Pseudoinverse Matrix as given below.  

𝑁𝑅 = ℎ𝑁𝐼;𝑁𝑅 ∈ 𝑅𝑚;  𝑁𝐼 ∈ 𝑅𝑛; ℎ ∈ 𝑅𝑚∗𝑛 (7) 

[

𝑁𝑅1

𝑁𝑅2

…
𝑁𝑅𝑚

] = [

ℎ1 ℎ2 … ℎ𝑙 0 0 0
0 ℎ1 … … ℎ𝑙 0 0
0 0 ℎ1 … … ℎ𝑙 0
0 0 0 ℎ1 … … ℎ𝑙

] [

𝑁𝐼1
𝑁𝐼2
…

𝑁𝐼𝑛

] (8) 

With the above said hypothesis as given in equation (7) 

and Pseudoinverse Matrix as given in equation (8), let ‘𝑅𝑀’ 

denote the real matrix with ‘𝑚 ∗ 𝑛’ dimension ‘ℜ(𝑅𝑀)’ 

represent the range of ‘𝑅𝑀’, then the association using  Moore 

Penrose function for identifying metastatic tissue in 

histopathologic scans of lymph node sections is as given 

below.  

𝑅𝑀.𝑁𝐼 = 𝑏 (9) 

From equation (9) with ‘𝑅𝑀 ∈ 𝑅𝑚∗𝑛; 𝑏 ∈ 𝑅𝑚’, ‘𝑏 ∉
ℜ(𝑅𝑀)’ with an association ‘𝑅𝑀.𝑁𝐼 = 𝑏’, then we have 

‘𝑅𝑀†𝑏 = 𝑅𝑒𝑠’, where ‘𝑅𝑒𝑠’ denotes the minimal norm 

solution and ‘𝑅𝑀†’ represents the Pseudoinverse Matrix of 

‘𝑅𝑀’ respectively. Then, the benchmark that we employ for 

the restoration of blurred images or denoise images is a 

minimal distance between measured data as below. 

𝑃𝐼 = min(|𝑁𝐼 − 𝑁𝑅|) (10) 

From equation results (10), preprocessed or denoised 

image ‘𝑃𝐼’ for identifying metastatic tissue in histopathologic 

scans of lymph node sections are obtained in an efficient 

manner. 

Algorithm 1 Statistical Nucleic Normalized Moore 

Penrose Pseudoinverse Matrix 
Input: Dataset ‘𝐷𝑆’, Sample Images ‘𝑆𝐼 = 𝑆𝐼1, 𝑆𝐼2, … , 𝑆𝐼𝑛’ 

Output: denoised preprocessed Image ‘𝑃𝐼’ 

Step 1: Initialize ‘𝑛’ 

Step 2: Begin 

Step 3: For each Dataset ‘𝐷𝑆’ with Sample Images ‘𝑆𝐼’ 

//Normalization  

Step 4: Evaluate average pixel value of each cell pattern as 

given in equation (1) 

Step 5: Evaluate Nucleus Longest Circumference as given 

in equation (2) 

Step 6: Evaluate Nucleus Shortest Circumference as given 

in equation (3) 

Step 7: Evaluate abnormality to obtain normalized function 

as given in equation (4) 

Step 8: Return normalized image ‘𝑁𝐼’ 

Step 9: End for 

//Denoising  

Step 10: For each Dataset ‘𝐷𝑆’ with normalized image ‘𝑁𝐼’ 

Step 11: Formulate image formation using Moore Penrose 

Pseudoinverse Matrix function as given in equations (5), 

(6), (7) and (8) 

Step 12: Formulate association function as given in 

equation (9) 

Step 13: Obtain preprocessed or denoised image as given 

in equation (10) 

Step 14: Return preprocessed image ‘𝑃𝐼’ 

Step 15: End for  

Step 16: End  

As given in the above algorithm, with the raw breast 

histopathology sample images provided as input, the objective 

remains to reduce the error rate involved in predicting invasive 

ductal carcinoma (IDC), the most common form of breast 

cancer. This, in turn, accurately and precisely decides whether 

tissue regions are cancerous or non-cancerous, therefore 

minimizing the error rate significantly. 

3.3. Fully Convolution-Based Watershed Segmentation 

Segmentation of nuclei cells is are core analysis step in 

several histopathology image evaluation tasks. Precise and 

accurate segmentation forms the fundamental principle of this 

process. The process consists of the detection of candidate 

pixels in the preprocessed image and delineation of separation 
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of the region of interest from background tissues as well as 

separation of nuclei from cytoplasm by a distinctive criterion 

employing Fully Convolution-based Watershed 

Segmentation. Watershed Segmentation, being one of the 

most popular segmentation techniques, is employed in nuclei 

and cell segmentation. The algorithm is boosted by specifying 

local minima only at the regions of interest (ROI) that serve as 

markers. This Fully Convolution-based marker-controlled 

watershed has much higher significance in segmenting and 

separating only these ROI. First, a fully convolutional network 

is applied that effectively learns to make dense predictions for 

per-pixel tasks like watershed segmentation. Followed by the 

marker selection for watershed segmentation that can be 

performed in several ways, and in this work, adaptive H-

minima transform is used for producing enhanced nuclei shape 

detection. For H&E-stained images of breast cancer, multiple 

marker types were utilized for segmentation with the merging 

of the resulting nuclei segmentations to obtain the final 

improved combined view. H-minima transform is to 

differentiate between dark and bright regions of nuclei 

producing foreground and background markers. As illustrated 

in Figure 3, for producing precise and accurate tissue and 

nucleic segmented output, the process is split into two parts, 

namely, full convolution and watershed segmentation. 

Fig. 3 Block diagram of fully convolution-based watershed segmentation model 

First, the preprocessed image provided as input is 

subjected to the full convolution part, where convolution 

employing the Toeplitz matrix and pooling with a kernel size 

of ‘3 ∗ 3’ is performed to obtain the pooled results.  Next, the 

actual segmentation employing H-minima transform-based 

Watershed Segmentation is done at the activation part of the 

full convolution layer, therefore separating the region of 

interest from background tissues as well as separating nuclei 

from cytoplasm. Each layer of data in a convnet is a three-

dimensional array of size ‘𝑥 ∗ 𝑦 ∗ 𝑧,’ where ‘𝑥𝑎𝑛𝑑𝑦’ denotes 

spatial dimensions and ‘𝑧’ represent the channel dimension.  

The fully convolutional network consists of convolution, 

pooling and activation. First, to perform convolution, a 

Toeplitz matrix is applied to the sampled preprocessed image 

‘𝑃𝐼’ provided as input. Here, the convolution of two vectors 

‘𝑃𝐼𝑖’ and ‘𝑃𝐼𝑗’ represents the area of overlap under the points 

as ‘𝑃𝐼𝑗’ slides across ‘𝑃𝐼𝑖’. Convolution is performed by 

means of the Toeplitz matrix, as given below.   

𝐶𝑜𝑛𝑣 = 𝑖 ∗ 𝑗 =

[
 
 
 
 
 
𝑖1 0 … 0 0
𝑖2 𝑖1 … … …
𝑖3 𝑖2 … 0 0
… 𝑖3 … 𝑖1 0
… … … 𝑖𝑚 𝑖𝑚−1

0 0 0 … 𝑖𝑚 ]
 
 
 
 
 

[
 
 
 
 
𝑗1
𝑗2
𝑗3
…
𝑗𝑛]

 
 
 
 

 (11) 

Breast Histopathology 

Images 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 

Denoised and preprocessed image 

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

𝑃𝑜𝑜𝑙𝑖𝑛𝑔 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛  

Apply Toeplitz matrix 

Apply kernel size, sub-sampling 

H-minima transform based 

Watershed Segmentation 

Tissue and nucleic segmented output 
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𝑃𝑜𝑜𝑙𝑖𝑗 = 𝑓𝑘𝑠({𝐶𝑜𝑛𝑣𝑠𝑖+𝛼𝑖,𝑠𝑗+𝛼𝑗}), 0 ≤ 𝛼𝑖 ≤ 𝛼𝑗 ≤ 𝑘 (12) 

From equations (11) and (12), convolution ‘𝐶𝑜𝑛𝑣’ and 

pooling operations ‘𝑃𝑜𝑜𝑙𝑖𝑗’ are performed for two vectors 

‘𝑃𝐼𝑖’ and ‘𝑃𝐼𝑗’ with respect to the sampled preprocessed image 

‘𝑃𝐼’. Also, pooling is performed by employing a kernel size 

‘𝑘’, sub-sampling ‘𝑠’ that reduces the resolution of the feature 

map without compromising the contrast.  Finally, activation is 

done using the H-minima transform-based watershed 

segmentation. The components of the studied H-minima 

transform-based Watershed Segmentation comprises of 3D 

marker-controlled watershed ‘𝑊𝑆𝑀𝐶’, H-minima-based 

marker-controlled watershed ‘𝑊𝑆𝐻𝑀𝑖𝑛’ and connected 

components ‘𝐶𝐶’ respectively. First, the 3D marker-

controlled watershed ‘𝑊𝑆𝑀𝐶’ requires an input comprising of 

markers (i.e., the preprocessed image) and nuclei mask (i.e., 

the pooled values) and applies Euclidean Distance Transform 

as below.  

𝐸𝐷𝑇(𝑖, 𝑗) = √∑ (𝑥𝑖 − 𝑎𝑑𝑗𝑖)
2𝑛

𝑖=1  (13) 

From the above equation (13), the Euclidean Distance 

Transform for the two vectors ‘𝑃𝐼𝑖’ and ‘𝑃𝐼𝑗’ with respect to 

the sampled preprocessed image, ‘𝑃𝐼’ is obtained based on the 

image pixel into consideration. ‘𝑥𝑖’ and the boundary or 

adjacent pixel in a binary image ‘𝑎𝑑𝑗𝑖’ respectively. Followed 

by the spacings of the transform ‘{𝑠𝑝𝑎𝑐𝑒𝑖 , 𝑠𝑝𝑎𝑐𝑒𝑗 , 𝑠𝑝𝑎𝑐𝑒𝑘 , }’ 

are normalized to separate regions of interest from background 

tissues, as given below.  

{𝑠𝑝𝑎𝑐𝑒𝑖 , 𝑠𝑝𝑎𝑐𝑒𝑗 , 𝑠𝑝𝑎𝑐𝑒𝑘 , } = {
𝑠𝑝𝑎𝑐𝑒𝑖𝑗

𝑠𝑝𝑎𝑐𝑒𝑖𝑗
,
𝑠𝑝𝑎𝑐𝑒𝑗𝑘

𝑠𝑝𝑎𝑐𝑒𝑖𝑗
,
𝑠𝑝𝑎𝑐𝑒𝑘𝑖

𝑠𝑝𝑎𝑐𝑒𝑖𝑗
} (14) 

Then, Euclidean Distance Transform results and 

normalized space results, as given in equation (14), are fed to 

a morphological watershed transform to produce 

segmentation results that separate nuclei from cytoplasm as 

below. 

𝑆𝑅𝑒𝑠 = 𝑊𝑆𝑀𝐶(𝑃𝐼,𝑊𝑆𝐻𝑀𝑖𝑛(𝐸𝐷𝑇(𝑖, 𝑗), ℎ)) (15) 

From equations (14) and (15), segmented results are 

obtained that form the basis for detecting and diagnosing 

disease in an accurate and precise manner. 

Algorithm 2 Fully Convolution-based Watershed 

Segmentation 

 Input: Dataset ‘𝐷𝑆’  

Output: Accurate cell pattern segmentation  

Step 1: Initialize ‘𝑛’, ‘𝑘 = 3 ∗ 3’, ‘, ‘𝑠 = 1’, ‘ℎ =
(1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 5.0)’ 

Step 2: Begin 

Step 3: For each Dataset ‘𝐷𝑆’ with preprocessed image ‘𝑃𝐼’ 

//Fully convoluted 

Step 4: Perform convolution by applying Toeplitz matrix as 

given in equation (11) 

Step 5: Perform pooling with the convoluted results as 

given in equation (12) 

//Activation  

//Segmentation  

Step 6: Formulate Euclidean Distance Transform as given 

in equation (13) 

Step 7: Evaluate normalized space results as given in 

equation (14) [separate region of interest from background 

tissues] 

Step 8: Evaluate morphological watershed transform as 

given in equation (15) [separate nuclei from cytoplasm] 

Step 9: Return segmented result ‘𝑆𝑅𝑒𝑠’ 

Step 10: End for 

Step 11: End  

In algorithm 2, with the preprocessed image as input, the 

entire part is split to full convolution and segmentation. 

Segmentation comes under activation so improving overall 

cell pattern segmentation precision recall rate in an extensive 

manner. 

4. Experimental Setup 
Experimental evaluation of the proposed MPPI-FCWS to 

detect cancer with histology analysis and two existing 

methods, deep neural networks [1] and Deep Learning-based 

Segmentation [2], is implemented in Python high-level, 

general-purpose programming language. The dataset used in 

this work is the Breast Cancer Histology image dataset 

acquired from 

https://www.kaggle.com/code/paultimothymooney/predict-

idc-in-breast-cancer-histology-images.  

5. Implementation Details 
We developed a method called MPPI-FCWS for 

detecting cancer via histology analysis with improved 

precision, recall, accuracy and minimal error rate.   

• The MPPI-FCWS method comprises preprocessing and 

segmentation.  

• The MPPI-FCWS method is compared with two existing 

methods, deep neural networks [1] and Deep Learning-

based Segmentation [2], using a breast cancer histology 

dataset to validate the results.  

• Initially, raw breast cancer histology images were 

obtained from the input dataset.  

• Statistical Nucleic Normalized Moore Penrose 

Pseudoinverse Matrix-based preprocessing algorithm is 

employed to ensure normalized and denoised images 

from the raw input breast cancer histology dataset. Next, 

with the aid of statistical nucleic-based normalization 

Moore Penrose Pseudoinverse Matrix based denoising, 

preprocessed image with error minimized preprocessed 

sample results are obtained.  

https://www.kaggle.com/code/paultimothymooney/predict-idc-in-breast-cancer-histology-images
https://www.kaggle.com/code/paultimothymooney/predict-idc-in-breast-cancer-histology-images
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• A fully Convolution-based Watershed Segmentation 

algorithm is applied to separate regions of interest from 

background tissues and separate nuclei from the 

cytoplasm, so ensuring the accuracy of cell-pattern 

segmented results. 

6. Discussion 
Performance analysis of the proposed method, MPPI-

FCWS, for detecting cancer via histology analysis is validated 

and analyzed by making a fair comparison between deep 

neural networks [1] and Deep Learning-based Segmentation 

[2]. To ensure fair comparison same dataset with similar 

sample images is used for providing detailed discussion.  

6.1. CASE 1: Precision Analysis 

Precision refers to the samples considered for simulation 

that were predicted correctly is denoted in the form of the 

model precision score. Precision analysis is also referred to as 

the positive predictive score analysis. It is evaluated as given 

below.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (16) 

From equation (16), precision ‘𝑃𝑟𝑒’ is measured with the 

aid of the true positive rate ‘𝑇𝑃’ (i.e., detection of cancerous 

patient as cancer) and false positive rate ‘𝐹𝑃’ (i.e., detection 

of non-cancerous as cancerous patients). The compared results 

of the MPPI-FCWS method, deep neural networks [1] and 

deep learning-based segmentation [2] are shown in Table 2. 

From Table 2, experimental results show the precision rate of 

the MPPI-FCWS method is better than [1] and [2]. The 

precision results are trained for 10 iterations to evaluate its 

effectiveness in diagnosing breast cancer. The analysis reveals 

that with an increasing number of iterations, there is a 

corresponding decrease in precision rate, coupled with a 

gradual improvement. However, the analysis also 

demonstrates that the precision rate neither increases nor 

decreases throughout the training process.  

Table 2. Comparison of precision results of different methods applied to 

the breast cancer histology image dataset 

Samples 

Precision 

MPPI-

FCWS 

Deep 

Neural 

Networks 

Deep Learning-

based 

Segmentation 

1500 0.86 0.83 0.8 

3000 0.84 0.82 0.78 

4500 0.82 0.8 0.76 

6000 0.81 0.78 0.74 

7500 0.8 0.78 0.74 

9000 0.8 0.79 0.75 

10500 0.82 0.8 0.77 

12000 0.83 0.81 0.79 

13500 0.82 0.81 0.79 

15000 0.8 0.78 0.75 

This is inferred from the simulation analysis with 1500 

samples provided as input, 150 samples being detected with 

cancerous cell pattern, and 1350 samples detected with non-

cancerous cell pattern, the true positive using the three 

methods MPPI-FCWS method, [1] and [2] were observed to 

be 130, 1250 and 120 and the false positive rate were observed 

to be 20, 25 and 30 respectively. With this, the overall 

precision rate was found to be 0.86, 0.83 and 0.80, 

respectively. The reason behind the improvement was owing 

to the application of the convolution employing the Toeplitz 

matrix for the preprocessed image provided as input. Followed 

by which the pooling with a kernel size of ‘3 ∗ 3’ was 

performed to obtain the pooled results. This, in turn, reduced 

false positives and improved true positives significantly, 

therefore improving overall precision using MPPI-FCWS by 

3% and 7% than the [1] and [2]. 

6.2. CASE 2: Recall Analysis  

Recall analysis is made that evaluates the method’s 

accuracy in predicting positives as differentiated from actual 

positives and is measured by the model recall score. This 

specifically differs from the precision that takes into 

consideration how many of the total number of positive 

predictions produced by the models are truly positive. With 

this recall analysis, the method's potential to identify positive 

instances is indicated by a high recall score. Recall is 

evaluated using the formula given below.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (17) 

From equation (17), recall rate ‘𝑅𝑒𝑐’, is evaluated by 

taking into consideration the true positive rate ‘𝑇𝑃’  and false 

negative rate ‘𝐹𝑁’  

 
Fig. 4 Comparison of recall rate using MPPI-FCWS, Deep Neural 

Networks [1] and Deep Learning-based Segmentation [2] 
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A comparison between the proposed MPPI-FCWS 

method and existing related studies [1] and [2] analyzing 

recall rate is shown in Figure 4. Also, the recall rate using the 

proposed MPPI-FCWS method was found to be 

comparatively lesser than [1] and [2]. This showed an 

improvement in terms of recall rate. The improvement of the 

recall rate using the proposed MPPI-FCWS method is owing 

to the application of a Fully Convolution-based Watershed 

Segmentation algorithm.  

By applying this algorithm initially, the preprocessed 

image was provided as input to the full convolution part, 

where convoluted results were obtained using the Toeplitz 

matrix, and pooled results were formed with respect to the 

kernel size of ‘3 ∗ 3’ performed to obtain the pooled results. 

The convolution here represented the area of overlap under the 

pooled vectors, also by applying this pooling that in turn 

minimizes the feature map resolution without compromising 

the contrast. With this, the false negative using the three 

methods were observed to be 50, 70 and 80. This confirmed 

overall recall rate improvement using MPPI-FCWS by 12% 

and 20%  than the [1, 2]. 

6.3. CASE 3: Accuracy Analysis 

Third, in this section, the method accuracy is 

mathematically defined as the ratio of true positive ‘𝑇𝑃’ and 

true negative ‘𝑇𝑁’ to all the positive and negative 

observations, amounting to one of the most extensively 

utilized performance factors for learning segmentation 

models. The accuracy rate is mathematically solved using the 

formula given below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝑇𝑁
 (18) 

From the above equation (18), the accuracy rate ‘𝐴𝑐𝑐’ 

measures the number of times and learning method predicted 

the cancer detection result accurately out of all the segmented 

cell patterns it made. The compared results of the MPPI-

FCWS method, deep neural networks [1] and deep learning-

based segmentation [2] with respect to accuracy rate 

substituting the formulates from equation (18) are shown in 

Table 3.  

From Table 3 the experimental results show that the 

accuracy rate of the proposed MPPI-FCWS method is found 

to be comparatively better than [1] and [2]. The accuracy 

results were trained for 10 iterations to measure its efficiency 

in diagnosing breast cancer based on cell patterns.  

The analysis infers that with an increasing number of 

sample images, the corresponding decrease in accuracy rate 

was observed, coupled with a gradual improvement. The 

analysis also demonstrates that the accuracy rate neither 

increases nor decreases throughout the training process, and 

this, in turn, infers that increasing the number of samples will 

not affect the accuracy rate. 

Table 3. Comparison of accuracy results of different methods applied to 

the breast cancer histology image dataset 

Samples 

Accuracy (%) 

MPPI-

FCWS 

Deep 

Neural 

Networks 

Deep Learning-

based 

Segmentation 

1500 0.95 0.93 0.92 

3000 0.93 0.89 0.83 

4500 0.91 0.87 0.81 

6000 0.9 0.85 0.8 

7500 0.88 0.83 0.79 

9000 0.85 0.81 0.77 

10500 0.85 0.81 0.73 

12000 0.87 0.82 0.75 

13500 0.89 0.83 0.77 

15000 0.89 0.84 0.78 

This is inferred from the simulation analysis with 1500 

samples provided as input, 150 samples being detected with 

cancerous cell pattern and 1350 samples detected with non-

cancerous cell pattern; the accuracy rate using the three 

methods MPPI-FCWS method, [1] and [2] were observed to 

be 95%, 93% and 92% respectively. The reason for accuracy 

improvement using the MPPI-FCWS method was due to the 

application of a Fully Convolution-based Watershed 

Segmentation algorithm. With this algorithm, the activation of 

the full convolution was performed by means of H-minima 

transform-based Watershed Segmentation. In addition, the 

preprocessed image serving as the markers and the pooled 

values serving as the nuclei mask were applied with Euclidean 

Distance Transform to separate regions of interest from 

background tissues and separate nuclei from the cytoplasm. 

This, in turn, segmented the cell patterns in an accurate 

manner, therefore improving the overall accuracy using the 

MPPI-FCWS method by 5% compared to [1] and 12% 

compared to [2], respectively. 

6.4. Case 4: Error Rate Analysis 

Error rate analysis usually infers the method's efficiency 

in detecting cancerous and differentiating between cancerous 

and non-cancerous based on cell pattern segmented portions. 

The lower the error rate more efficient the method is said to 

be, and vice versa. It is evaluated as given below.  

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = ∑
𝑆𝐼𝑊𝐷

𝑆𝐼𝑖

𝑛
𝑖=1 ∗ 100 (19) 

From the above equation (19) results, the error rate 

analysis is made ‘𝐸𝑅’ by taking into consideration the sample 

images ‘𝑆𝐼𝑖’ involved in the simulation process and the sample 

images wrongly detected results. ‘𝑆𝐼𝑊𝐷’ into consideration. It 

is measured in terms of percentage (%). Figure 5 shows a 

graphical representation of error rate analysis MPPI-FCWS, 

deep neural networks [1] and Deep Learning-based 

Segmentation [2]. From the below figure, an increase in the 

error rate using all three methods is observed for an increase 

in sample size. 
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Fig. 5 Comparison of error rate using MPPI-FCWS, deep neural 

networks [1] and deep learning-based segmentation [2] 

To detect cancer based on cell pattern segmentation with 

histology analysis for cancer grading, accurate and precise 

analysis has to be made so that the error involved in the overall 

analysis can be minimized. From the above figure, the error 

rate using the MPPI-FCWS method was found to be 1.33%, 

whereas using [1] and [2] was observed to be 1.86% and 

2.33%, respectively. From these results, the error rate 

performance analysis using the MPPI-FCWS method was 

comparatively better than [1] and [2]. The reason was due to 

the application of the Statistical Nucleic Normalized Moore 

Penrose Pseudoinverse Matrix-based preprocessing 

algorithm. By applying this algorithm, the first normalization 

was performed using the statistic nucleic model, and then 

denoising was performed with the normalized images using 

the Moore Penrose Pseudoinverse Matrix. This, in turn, aided 

in accurate and precise cancer grading to differentiate between 

cancerous and non-cancerous. With this overall error rate 

using the MPPI-FCWS method was reduced by 20% and 43% 

than the [1, 2].  

6.5. Comparison of Proposed and State-Of-Art Works  

In this section, performance analysis of the proposed 

MPPI-FCWS method, deep neural networks [1] and Deep 

Learning-based Segmentation [2] are compared with the 

Breast Cancer Histology image dataset. The evaluation is 

conducted using various metrics, such as precision, recall, 

accuracy and error rate. Table 4, given below, summarizes the 

results of the MPPI-FCWS method [1], [2]. Table 4 

demonstrates the overall performance results of all 

parameters, including precision, recall, accuracy, and error 

rate, for three methods. The results of the proposed MPPI-

FCWS method are provided to better performance of 

precision, recall and accuracy by 0.82, 0.69 and 0.89 

compared to the existing methods. Also, the average error rate 

is reduced by up to 2.9% using the proposed MPPI-FCWS 

method compared to state-of-the-art works.  

Table 4. Overall results of the proposed MPPI-FCWS method, state-of-

art works such as deep neural networks [1] and Deep learning-based 

segmentation [2] Breast cancer histology image dataset 

Methods/Metrics 
Proposed 

MPPI-FCWS 

Existing 

Deep 

Neural 

Networks 

Existing Deep 

Learning-

based 

Segmentation 

Precision 0.82 0.8 0.77 

Recall 0.69 0.61 0.57 

Accuracy 0.89 0.84 0.79 

Error rate (%) 2.9 3.67 5.16 

 

7. Conclusion  
Breast cancer detection cannot be precisely predicted by 

simply investigating discrete causes of disease. Only through 

the construction of a considerable analysis can 

histopathologists be provided with predictions of highly 

probable diseases. Past research works focused on cancer 

detection with histology analysis both using traditional and 

non-traditional methods, including machine learning and deep 

learning. In this work, significant deep learning using MPPI-

FCWS to detect cancer with histology analysis is proposed 

with the objective of improving detection. The simulation 

consequences validated that the MPPI-FCWS method 

provides better results in precision, recall, accuracy and error 

rate overhead compared to existing methods. 

Data Availability  
Data are available within the article. The data have been 

gathered from 

(https://www.kaggle.com/code/paultimothymooney/predict-

idc-in-breast-cancer-histology-images )
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