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Abstract - Software-Defined Networking (SDN) exhibits a programmable architecture that decouples the control plane from the 

data plane, improving network management. On the other hand, this centralizing makes the network more susceptible to 

Distributed Denial of Service (DDoS) attacks, which might easily overwhelm the resources of SDN and lead to network failure. 

Early identification of such risks is necessary for the continuous stability of SDN. The slow approach's real-time traffic 

monitoring capabilities enable one to efficiently sample flow-based data. This helps reduce processing overhead in network 

switches and provides good attack detection. Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), and ResNet 

make up the Stacked Deep Ensemble Model applied in this research project; all these components contribute to accurate DDoS 

classification achievement. GNS 3 models the topology of the network while the SDN environment is built using the ONOS SDN 

Controller. SFlow helps with data collecting; Prometheus acts as a time-series database to store traffic data. Using both the NSL-

KDD and UNSW-NB15 benchmark datasets, the proposed approach is assessed to be resilient over a wide range of attack 

scenarios. Since the ensemble model reduces the number of false positives found and efficiently achieves higher classification 

accuracy, the experiments show that it performs better than conventional detection methods. 

Keywords - DDoS detection, Software-Defined Networking, sFlow, Deep learning, Ensemble model. 

1. Introduction 
A revolution in network management follows from the 

increasing acceptance of Software-Defined Networking 

(SDN). By decoupling the data plane and the control plane, 

one can attain this and so enable centralized network 

programmability and flexibility [1-3]. At the same time, this 

architectural modification allows dynamic traffic control, 

security policies, and network optimization while increasing 

scalability and automation.  

On the other hand, The centralized nature of SDN 

generates serious security problems, mostly connected to 

vulnerabilities in Distributed Denial of Service (DDoS) 

attacks. These attacks might overwhelm network controllers, 

influencing performance or causing complete failure. DDoS 

attacks use the architectural vulnerability of SDN, so depleting 

resources and disrupting regular operations by flooding the 

control plane with hostile traffic [1-3]. 

2. Challenges 
Several challenges arise in SDN systems due to the 

detection and mitigation of DDoS attacks. First, as a single 

point of failure, software-defined networking controllers are 

prime targets for attackers who aim to disturb network 

operations [4]. Second, particularly those generated by botnets 

and advanced adversaries, conventional DDoS detection 

methods depending on rule-based or signature-based intrusion 

detection find it difficult to adapt to evolving attack patterns 

[5]. Moreover, effective traffic monitoring without 

unnecessarily running computational overhead on network 

switches determines real-time threat detection in SDN. This is 

so because more processing could compromise the general 

network performance [6]. Current solutions often have low 

adaptability to modern attack strategies, ineffective use of 

resources, and high false positives [4-6]. 

2.1. Problem Definition 

Standardized controllers in SDN expose the network to 

mass DDoS attacks, compromising the functionality of the 

data plane and control planes' functionality [7]. Regarding 

ever-shifting threat environments, traditional security systems 

are insufficient since they rely on predefined attack signatures 

or limited computational capacity [8].  

Moreover, most conventional approaches depend on deep 

packet inspection, which increases processing costs in 

environments running SDN services [9] and generates latency. 

A lightweight but potent solution combining intelligent traffic 

monitoring with sophisticated deep learning models is needed 

to improve real-time attack detection [10].  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:natesan12345@gmail.com


S. Natesan & C. Sivakumar / IJETT, 73(6), 292-301, 2025 

 

293 

3. Objectives 
A DDoS detection system built on sFlow-based real-time 

traffic monitoring will help lower the load on SDN switches. 

To propose a deep ensemble learning approach to reduce false 

positives count and increase classification accuracy. 

Combining ResNet, Recurrent Neural Networks (RNN), and 

Deep Neural Networks (DNN) 

3.1. Novelty 

The proposed approach maximizes the accuracy and 

resource economy of the DDoS detection process by 

combining sFlow-based sampling with a Stacked Deep 

Ensemble Model. By means of real-time traffic data acquired 

by the sFlow system, this model ensures flexibility enough to 

match evolving attack strategies. By contrast, conventional 

deep learning-based methods rely on stationary datasets. 

Moreover, several deep learning architectures improve 

detection robustness, surpassing single models in especially 

difficult attacks. 

3.2. Contributions 

1. In SDN, using flow-based sampling with sFlow lowers 

processing overhead and helps to detect real-time attacks. 

2. DNN, RNN, and ResNet improve DDoS classification 

accuracy using traffic characteristics, such as spatial-

temporal traffic characteristics. 

3. Real-world SDN systems present practical relevance of 

the ONOS SDN Controller and GNS3-based topology 

simulation. 

4. Related Works 
Using a range of techniques leveraging machine learning, 

statistical analysis, and flow-based monitoring systems [11-

16], DDoS detection in Software-Defined Networks (SDN) is 

extensively investigated. Early works mostly depended on 

rule-based and anomaly detection techniques, which lacked 

the flexibility to fit changing attack patterns even if they were 

good against known hazards [11]. These methods proved 

successful against known hazards. Recently, deep learning-

based solutions have drawn the most interest in new 

advancements. These solutions comprise hybrid models, Long 

Short-Term Memory (LSTM) networks, and Convolutional 

Neural Networks (CNNs [12]). Better classification 

performance depends on these components. In many studies, 

research on DDoS detection has focused much on flow-based 

monitoring. 

As a means of network behavior analysis, statistical 

feature-based approaches employing entropy, correlation, and 

threshold-based anomaly detection have been proposed [13]. 

Although they successfully identify volumetric attacks [], 

these methods cannot manage more complex distributed 

denial of service attacks, such as low-rate or multi-vector 

attacks, in which traffic patterns are more difficult to 

distinguish from legitimate fluctuations [14]. It is shown that 

deep learning models show encouraging performance in terms 

of increasing detection accuracy and adaptation. Spatial and 

temporal aspects from network traffic have been extracted 

using conventional architectures, including Long Short-Term 

Memory (LSTMs) and Convolutional Neural Networks 

(CNNs).  

However, when applied to real-world traffic patterns 

showing dynamic changes, single-model techniques 

sometimes have limitations in terms of their generalizability. 

Combining several deep learning architectures is shown as a 

solution to this problem [16] using ensembles of learning 

techniques. These methods aim to improve such systems' 

general resilience and classification performance.  

Moreover, under research is the possibility of combining 

sFlow-based monitoring with machine learning approaches. 

Flow sampling offers traffic insights that are not only 

lightweight but also instructive, thus reducing the processing 

demand of SDN controllers, according to previous studies 

[13]. However, most of the studies conducted up until now 

have concentrated on traditional machine learning classifiers, 

including Support Vector Machines (SVM) and Random 

Forest. Even if they are efficient, these classifiers do not fully 

exploit the possibilities of deep learning for intricate attack 

scenarios [14-16]. 

However, to offer complete DDoS classification, our 

proposed approach combines real-time sFlow monitoring with 

a Stacked Deep Ensemble Model using DNN, RNN, and 

ResNet. This hybrid architecture improves detection accuracy 

and adaptability to evolving threats, overcoming the 

limitations of single-model architectures. Moreover, 

evaluation over a spectrum of attack paths guarantees that the 

model performs better using the NSL-KDD and UNSW-NB15 

datasets. Among other things, the results of the experiments 

reveal improved accuracy, false positive rates, and 

computational economy. Based on SDN, this performance 

shows that deep learning can be included in security systems. 

To provide a scalable and adaptable solution for DDoS 

mitigating, the proposed model advances state-of-the-art SDN 

security significantly. We reach these advances with real-time 

sFlow traffic monitoring, ensemble deep learning, and 

efficient SDN integration applications. 

4.1. Proposed Method 

To propose an accurate classification of attack patterns in 

SDN systems, the proposed DDoS detection system combines 

sFlow-based real-time traffic monitoring with a Stacked Deep 

Ensemble Model. The sFlow collector starts the process in the 

first phase. It regularly samples network traffic, at which point 

it can record important flow statistics and concurrently lower 

processing overhead on SDN switches. For further processing, 

traffic measurements are derived from Prometheus, the time-

series database containing the sampled data. First, a feature 

extraction module will select the features pertinent to 

classification to standardize the obtained flow data. DNN, 
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RNN, and ResNet connections are subsequently stacked in a 

Stacked Deep Ensemble Model from the processed data. 

While the RNN detects temporal dependencies in traffic 

patterns, the DNN catches high-level abstract features; ResNet 

addresses vanishing gradients through skip connections, 

enhancing feature extraction. Still, the DNN is responsible for 

generating high-level abstraction by aggregating the forecasts 

generated by many networks using the ensemble model, one 

to increase resilience and classification accuracy. The last 

classification decision will determine whether the arriving 

traffic is normal or a part of a distributed denial of service 

attack. The recommended approach is a great fit for SDN 

systems since it guarantees real-time detection and calls only 

minimum computational overhead. 

 
Fig. 1 Proposed process 

4.2. Pseudocode for DDoS Detection using Stacked Deep Ensemble Model 

# Import necessary libraries 

import tensorflow as tf 

from tensorflow. Keras. models import Sequential 

from tensorflow. Keras. layers import Dense, LSTM, Conv1D, Flatten, Dropout 

import numpy as np 

# Step 1: Load and preprocess data from Prometheus (sFlow samples) 

def load_data(): 

    data = retrieve_from_prometheus()  # Fetch traffic data from time-series database 

    features, labels = preprocess(data)  # Normalize and extract relevant features 

    return features, labels 

# Step 2: Define individual models 

def build_dnn(input_shape): 

    model = Sequential([ 

        Dense(128, activation='relu', input_shape=input_shape), 

        Dense(64, activation='relu'), 

        Dense(32, activation='relu'), 

        Dense(1, activation='sigmoid')  # Binary classification (Normal or DDoS) 

Traffic Monitoring with 
sFlow

Data Storage

Feature Extraction

Stacked Deep Ensemble 
Model for Classification

Ensemble Decision

Detection Output

Mitigation Response
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    ]) 

    return model 

def build_rnn(input_shape): 

    model = Sequential([ 

        LSTM(64, return_sequences=True, input_shape=input_shape), 

        LSTM(32), 

        Dense(1, activation='sigmoid') 

    ]) 

    return model 

def build_resnet(input_shape): 

    model = Sequential([ 

        Conv1D(64, kernel_size=3, activation='relu', input_shape=input_shape), 

        Conv1D(64, kernel_size=3, activation='relu'), 

        Flatten(), 

        Dense(32, activation='relu'), 

        Dense(1, activation='sigmoid') 

    ]) 

    return model 

# Step 3: Train models independently 

def train_models(X_train, y_train): 

    den = build_dnn((X_train.shape[1],)) 

    rnn = build_rnn((X_train.shape[1], 1)) 

    resnet = build_resnet((X_train.shape[1], 1)) 

    dnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

    rnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

    resnet.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

    dnn.fit(X_train, y_train, epochs=10, batch_size=32, verbose=1) 

    rnn.fit(X_train.reshape(-1, X_train.shape[1], 1), y_train, epochs=10, batch_size=32, verbose=1) 

    resnet.fit(X_train.reshape(-1, X_train.shape[1], 1), y_train, epochs=10, batch_size=32, verbose=1) 

    return dnn, rnn, resnet 

# Step 4: Aggregate predictions from ensemble model 

def ensemble_predict(dnn, rnn, resnet, X_test): 

    dnn_pred = dnn.predict(X_test) 

    rnn_pred = rnn.predict(X_test.reshape(-1, X_test.shape[1], 1)) 

    resnet_pred = resnet.predict(X_test.reshape(-1, X_test.shape[1], 1)) 

    final_pred = (dnn_pred + rnn_pred + resnet_pred) / 3  # Averaging predictions 

    return (final_pred > 0.5).astype(int)  # Apply threshold for classification 

# Step 5: Deploy the detection system 

def detect_ddos(): 

    X, y = load_data() 

    dnn, rnn, resnet = train_models(X, y) 

    predictions = ensemble_predict(dnn, rnn, resnet, X) 

    if np.any(predictions == 1): 

        alert_admin("DDoS Attack Detected!")  # Trigger mitigation response 

    else: 

        print("No attack detected.") 

# Execute the detection process 

detect_ddos() 

5. Traffic Monitoring with sFlow 
Sampled Flow, the packet sampling system sFlow, makes 

real-time traffic monitoring in high-speed networks possible. 

Where the controller is the central location for network 

intelligence, sFlow helps reduce the amount of processing 

overhead by sampling just a subset of packets instead of 

processing every Flow in SDN. Every SDN switch boasts a 

sFlow agent built on top of it. This agent gathers flow statistics 

from network packets and forwards them, at regular intervals, 

to a centralized sFlow collector.  

Aggregating the data acquired by this collector helps to 

keep overhead to a minimum and clearly shows the activity on 

the network. 
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1. Packet Sampling: sFlow agent embedded in SDN 

switches randomly samples network packets as they pass 

across the switch. 

2. Statistical Aggregation: the analyzed sampled packets 

allow the extraction of extensive properties, including the 

source and destination IP addresses, the protocol type, the 

packet size, and the flow duration. 

3. Transmission to sFlow Collector: The switch forwards the 

sampled data to the sFlow collector, which then compiles 

and stores the flow data for further analysis. 

4. Forwarding to Prometheus: Prometheus, a time-series 

database, receives the processed data from the sFlow 

collector via forwarding for structured storage and 

retrieval. 

Table 1. sFlow traffic data 

Timestamp Source IP Destination IP Protocol 
Packet Size 

(Bytes) 

Flow Duration 

(ms) 

10:02:30 192.168.1.2 10.0.0.5 TCP 1500 120 

10:02:31 172.16.4.8 192.168.2.1 UDP 512 80 

10:02:32 10.0.0.7 192.168.1.3 ICMP 64 5 

Prometheus then stores the acquired sFlow data so, 

enabling real-time monitoring as well as historical analysis of 

network traffic, as in Table 1. 

5.1. Data Storage and Feature Extraction 

Sampled flow data is stored by the sFlow collector; then, 

it is processed for feature extraction to ready it for presentation 

to the DDoS classification model. Transposing raw flow data 

into relevant inputs for the deep learning classifier is a crucial 

first step achieved during feature extraction. The obtained 

features mirror the network's behaviour, enabling exact 

differentiation between benign and malicious traffic. 

5.2. Key Features Extracted 

1. Packet Rate (PR): The Packet Rate (PR) is the quantity of 

packets passing a given source in one second. 

2. Flow Entropy (FE): Higher values of Flow Entropy (FE) 

indicate attack possibility; it measures the randomness of 

source-destination connections. 

3. Byte Count (BC): The total byte count moved over a 

given period of time is known as byte count, or BC. 

4. Flow Duration (FD): The time interval separating the first 

from the last packet in a flow is Flow Duration (FD). 

Table 2. Feature extraction from sFlow data 

Timestamp PR (pps) FE BC (Bytes) FD (ms) Label (0 = Normal, 1 = DDoS) 

10:02:30 150 0.7 3000 120 0 

10:02:31 8000 0.9 60000 5 1 

10:02:32 16000 0.95 120000 2 1 

Normal traffic has moderate values; anomalous flows-

which may be DDoS attacks-have a very high packet rate, a 

short flow duration, and great entropy, as shown in Table 2. 

The Packet Rate (PR) is calculated as: 

𝑃𝑅 =
𝑁𝑝

𝑇𝑤
  

Where: 

Np = Number of packets observed in the time window 

Tw = Time window duration in seconds 

A high PR value indicates suspicious activity, possibly 

part of a DDoS attack. The Flow Entropy (FE) measures the 

randomness of network traffic and is computed as: 

𝐹𝐸 = − ∑ 𝑃𝑛
𝑖=1 (𝑖) 𝑙𝑜𝑔2 𝑃(𝑖)  

Where: 

P(i) = Probability of occurrence of Flow iii 

n = Total Number of unique flows 

Increasing the randomness in packet source-destination 

couples results in a higher entropy value, indicating the 

probability of a distributed denial of service attack. Effective 

capture of network traffic patterns by a sFlow-based traffic 

monitoring system reduces the overhead on SDN switches.  

The system can effectively differentiate between DDoS 

and normal traffic by means of the extraction of basic 

properties, including packet rate, flow entropy, byte count, and 

flow duration. Using the acquired features as input, stacked 

deep ensemble models can identify distributed denial of 

service attacks with minimum of false positives. 

5.3. Stacked Deep Ensemble Model for Classification 

The proposed Stacked Deep Ensemble Model combines 

three deep learning architectures: ResNet, RNN, and DNN. 

This model seeks to improve classification accuracy for 

distributed denial of service attacks in SDN settings. Every 

single model adds specifically to the whole learning process: 

1. DNN: The DNN allows one to detect high-level abstract 

patterns in the network traffic. 
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2. RNN: RNN searches for sequential dependencies in flow-

based traffic. 

3. ResNet: ResNet improves feature extraction and helps to 

eliminate problems with disappearing gradients. 

Training starts with traffic data gathered feature-extracted 

from the sFlow collector. Prometheus then keeps this 

information as a time-series dataset. The dataset consists of 

two sets: the training and the testing ones. In independent 

training, every deep learning model uses extracted features, 

including packet rate, flow entropy, byte count, and flow 

duration. 

Every model learns to depict the traffic patterns on the 

network differently. DNN uses dense layers to detect 

complicated relationships; RNN uses Long Short-Term 

Memory units (LSTMs) to recognize temporal dependencies; 

ResNet uses convolutional layers with residual connections to 

improve learning in deep neural networks. 

Every model trained will produce a probability score 

between 0 and 1, indicating whether the Flow is an attack or 

normal. These specific forecasts are collected and investigated 

during the ensemble decision phase to produce the last 

classification. Table 3 shows model predictions prior to 

ensemble decisions. 

Table 3. Model predictions before ensemble decision 

Flow 

ID 

DNN 

Output 

(0-1) 

RNN 

Output 

(0-1) 

ResNet 

Output 

(0-1) 

Actual Label 

(0=Normal, 

1=DDoS) 

1 0.10 0.15 0.20 0 

2 0.85 0.80 0.90 1 

3 0.40 0.45 0.50 0 

4 0.95 0.90 0.98 1 

6. Ensemble Decision 
An ensemble averaging approach helps one to reach the 

final classification decision. This approach estimates the 

attack likelihood using the combined DNN, RNN, and ResNet 

predictions.  

The research finds the aggregated prediction score by 

means of a computation using the following equation: 

𝑃final =
𝑃DNN+𝑃RNN+𝑃ResNet

3
  

Where: 

PDNN = Output probability from DNN 

PRNN = Output probability from RNN 

PResNet = Output probability from ResNet 

The traffic is said to be a distributed denial of service 

attack (1) if the last packet (Pfinal) outperforms a predefined 

threshold, for example, 0.5; otherwise, it is normal traffic (0). 

Table 4. Final ensemble decision output 

Flow 

ID 
Aggregated Score Pfinal 

Final Prediction 

(0=Normal, 

1=DDoS) 

1 
0.10 + 0.15 + 0.20

3
= 0.153 0 (Normal) 

2 
0.85 + 0.80 + 0.90

3
= 0.85 1 (DDoS) 

3 
0.40 + 0.45 + 0.50

3
= 0.45 0 (Normal) 

4 
0.95 + 0.90 + 0.98

3
= 0.94 1 (DDoS) 

Table 4 shows the ensemble decision output. A weighted 

ensemble approach allows us to make even more improved 

decisions. Every model adds different degrees of significance 

depending on its accuracy under this approach; the weighted 

prediction score can be calculated as follows: 

𝑃𝑤 = 𝑤1𝑃DNN + 𝑤2𝑃RNN + 𝑤3𝑃ResNet  

Where: 

w1,w2 and w3 are the model-specific weights 

(determined based on validation accuracy). 

Pw is compared against a threshold to make the final 

classification. 

Using weighted contributions, models with higher 

performance levels guarantee a more significant impact on the 

decision, so enhancing the general process accuracy. The 

stacked Deep Ensemble Model improves distributed denial of 

service attack detection in SDN systems by leveraging several 

deep learning architectures.  

By residual learning, ResNet enhances feature extraction; 

the DNN finds high-level patterns; the RNN finds attack 

behaviors dependent on time. Predictions are compiled during 

the ensemble decision phase by weighted approach or simple 

averaging. This keeps the minimum of false positives and 

ensures higher classification accuracy. 

6.1. Detection Output and Mitigation Response 

As soon as the Stacked Deep Ensemble Model detects that 

the traffic on the network is either normal or a distributed 

denial of service attack to safeguard the SDN from disturbance 

in service, the system starts a mitigating reaction. The 

predefined mitigating actions depend on the degree of attack 

once the detection output reaches the SDN Controller 

(ONOS). 

6.2. Detection Output Process 

Prometheus, a database with time series, is kept safe after 

the ONOS SDN Controller constantly monitors the detection 

results from the deep learning model. Should an anomaly 
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arise, the system will categorize the attack based on metrics 

including packet rate, entropy, and flow length into Low, 

Medium, or High threat levels. Driving these threat levels is 

the system. 

1. Low Threat (Minor Anomaly): Temporary traffic spikes 

are observed, but normal behavior resumes quickly. No 

action is taken. 

2. Medium Threat (Potential Attack): Packet rates and 

entropy indicate suspicious behavior, but the attack is not 

fully confirmed. The system reduces bandwidth 

allocation for the suspicious IP. 

3. High Threat (Confirmed DDoS Attack): Extremely high 

packet rates and abnormal flow patterns indicate a clear 

attack. The SDN controller blocks the malicious source IP 

and reroutes traffic to mitigate congestion. 

As in Table 5, the detection results are kept in a database 

to be closely inspected and used in forensic investigations.  

Table 5. Detection output 

Timestamp Source IP 
Packet Rate 

(pps) 

Flow 

Entropy 

Attack 

Probability 
Threat Level 

Mitigation 

Action 

10:02:30 192.168.1.2 150 0.7 0.15 Low None 

10:02:31 172.16.4.8 8000 0.9 0.85 High Block IP 

10:02:32 10.0.0.7 16000 0.95 0.94 High Block IP 

10:02:33 192.168.5.3 500 0.8 0.50 Medium Limit Bandwidth 

7. Mitigation Response Mechanism 
The SDN Controller takes mitigating action upon the 

identification of a high-probability attack. The way the risk is 

lowered is by routing traffic, limiting the connection rate, or 

deleting packets arriving from hostile sources.  

The responses are defined by the two equations below. 

When the traffic from a given source IP exceeds a predefined 

threshold (Pth), the rate limiter reduces the bandwidth 

connected to that source IP to prevent congestion on the 

network. 

𝑅new = 𝑅current × (1 −
𝑃attack

𝑃max
)  

Where: 

Renew = Adjusted bandwidth rate for the suspected IP 

Recurrent = Current bandwidth allocated 

Pattack = Attack probability detected by the model 

Pmax = Maximum probability (1.0 for confirmed 

attacks) 

For a source IP with an attack probability of 0.85 and 

bandwidth allocated of 100 Mbps, the new rate would be 0.85, 

for example. 

𝑅new = 100 × (1 − 0.85) = 15  

This reduces the attacker's bandwidth, compromising 

their ability to properly overwhelm the system.  

The SDN controller will use a flow rule to guide 

OpenFlow switches to block the IP address should the traffic 

anomaly score (Sa) be higher than a blocking threshold (Sb). 

Block IP if 𝑆𝑎 > 𝑆𝑏   

Where: 

Sa = Weighted sum of packet rate, flow entropy, and byte 

count 

Sb = Predefined threshold for blocking (e.g., 0.80) 

The system automatically blocks the false IP address, as 

in Table 6. 

The Detection Output and Mitigating Response system 

ensures real-time reactions to distributed denial of service 

attacks. The Stacked Deep Ensemble Model oversees 

correctly classifying network traffic, while the SDN 

Controller (ONOS) is in charge of dynamically changing 

bandwidth and blocking dangerous sources depending on the 

degree of different threats.  

One can quickly prevent attackers from overwhelming the 

network through rate limiting and IP blocking equations, 

ensuring minimum disturbance of services. 

Table 6. Post-mitigation actions 

Timestamp Source IP Threat Level Initial Bandwidth (Mbps) New Bandwidth (Mbps) Mitigation Action 

10:02:30 192.168.1.2 Low 50 50 None 

10:02:31 172.16.4.8 High 100 15 Block IP 

10:02:32 10.0.0.7 High 100 10 Block IP 

10:02:33 192.168.5.3 Medium 50 25 Limit Bandwidth 
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7.1. Results and Discussion 

The experimental configuration was evaluated with help 

from a virtualized environment SDN testbed. Topology was 

done using GNS3, and ONOS was chosen as the software-

defined networking controller. Real-time network traffic was 

collected with sFlow-RT; the data was kept in Prometheus for 

more inspection. TensorFlow, Keras, and Scikit-learn were 

used to build the Stacked Deep Ensemble Model (DNN, RNN, 

ResNet) and then trained on the NSL-KDD and UNSW-NB15 

datasets. Another Python implementation was used. A 

dedicated server in the experimental setup had a 3.6 GHz Intel 

Xeon processor, 64 GB of RAM, and an NVIDIA RTX 3090 

Graphics Processing Unit (GPU), accelerating deep learning 

computations. We assessed the proposed method against three 

existing methods: CNN-Based Intrusion Detection System 

(CNN-IDS), Random Forest Classifier (RF-IDS) and LSTM-

Based Anomaly Detection (LSTM-IDS). 

7.2. Dataset Description 

Two well-known cybersecurity datasets were used: 

1. NSL-KDD: The NSL-KDD dataset is a modified form of 

KDD99, including labeled attack traffic. Among these are 

DDoS, probe, U2R, R2L, and attacks. 

2. UNSW-NB15: UNSW-NB15 shows regular traffic and 

several types of attacks, including exploits, fuzzers, and 

denial of service attacks. 

Table 7. Dataset  

Timestamp Source IP Destination IP Protocol Packet Rate Flow Duration Attack Type 

10:02:30 192.168.1.2 10.0.0.5 TCP 500 2.5 sec Normal 

10:02:31 172.16.4.8 10.0.0.6 UDP 8000 1.2 sec DDoS 

10:02:32 10.0.0.7 10.0.0.9 ICMP 16000 0.8 sec DDoS 

10:02:33 192.168.5.3 10.0.0.10 TCP 500 2.1 sec Probe 

Table 8. Experimental setup and parameters 

Parameter Value 

SDN Controller ONOS 

Simulation Tool GNS3 

Traffic Collector sFlow-RT 

Database Prometheus 

Deep Learning Framework TensorFlow, Keras 

Datasets Used NSL-KDD, UNSW-NB15 

Training Data Split 80% Training, 20% Testing 

Batch Size 64 

Learning Rate 0.001 

Optimizer Adam 

Number of Epochs 50 

GPU Used NVIDIA RTX 3090 

CPU Used Intel Xeon (3.6 GHz) 

RAM 64 GB 

Table 9. Accuracy over 50 Epochs 

Epochs CNN-IDS RF-IDS LSTM-IDS Proposed Model 

10 82.1% 85.3% 87.2% 90.5% 

20 84.5% 87.1% 89.5% 92.8% 

30 86.3% 88.4% 91.2% 94.6% 

40 87.8% 89.9% 92.8% 96.2% 

50 88.9% 91.0% 94.1% 97.5% 

Regarding accuracy, the proposed Stacked Deep 

Ensemble Model generated routinely better results than the 

previously used methods. Comparing it to 88.9% (CNN-IDS), 

91.0% (RF-IDS), and 94.1% (LSTM-IDs) at 50 epochs, it 

reached 97.5% accuracy. This is a significant improvement. 

Time analysis and deep feature extraction were applied in the 

ensemble architecture to improve classification performance. 

Notably, higher than the other three models, the proposed 

model obtained an F1-score of 96.8% after 50 epochs against 

CNN-IDS (86.0%), RF-IDS (89.2%), and LSTM-IDS 

(92.5%). This development indicates that the model can 

correctly balance recall and accuracy, lowering false alarms 

and preserving high attack detection rates. Over 50 epochs, the 

proposed model exceeded CNN-IDS (86.8%), RF-IDS 

(89.7%), and LSTM-IDs (93.0%), with a precision of 97.2%. 

Real-world adaptive learning mechanisms of the ensemble 
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structure and enhanced feature selection significantly reduced 

the false positive count, improving the dependability of 

detection of distributed denial of service attacks. The proposed 

model exhibited the best recall, indicating that real-time threat 

detection is strengthened and that the capacity to correctly 

identify attack traffic has developed, thus reducing the number 

of false negatives. The results revealed that the proposed 

Stacked Deep Ensemble Model exceeded the current methods. 

Its 98.3% training accuracy outperforms those of CNN-IDS 

(91.2%), RF-IDS (93.5%), and LSTM-IDS (95.1%). 

Table 10. F1-Score over 50 Epochs 

Epochs 
CNN-

IDS 

RF-

IDS 

LSTM-

IDS 

Proposed 

Model 

10 78.5% 81.8% 84.1% 88.7% 

20 80.9% 84.3% 86.9% 91.2% 

30 83.0% 86.1% 89.2% 93.5% 

40 84.7% 87.9% 91.0% 95.4% 

50 86.0% 89.2% 92.5% 96.8% 

Table 11. Precision over 50 Epochs 

Epochs 
CNN-

IDS 

RF-

IDS 

LSTM-

IDS 

Proposed 

Model 

10 80.2% 83.0% 85.7% 89.9% 

20 82.5% 85.2% 88.1% 92.3% 

30 84.1% 87.0% 90.0% 94.1% 

40 85.5% 88.4% 91.6% 95.9% 

50 86.8% 89.7% 93.0% 97.2% 

Table 12. Recall over 50 Epochs 

Epochs 
CNN-

IDS 

RF-

IDS 

LSTM-

IDS 

Proposed 

Model 

10 76.9% 80.7% 83.4% 87.9% 

20 79.2% 83.1% 86.3% 90.8% 

30 81.6% 85.3% 88.5% 93.0% 

40 83.4% 87.1% 90.4% 94.9% 

50 84.9% 88.5% 91.9% 96.3% 

Table 13. Accuracy of training and testing data 

Method 
Training 

Accuracy 

Testing 

Accuracy 

CNN-IDS 91.2% 88.9% 

RF-IDS 93.5% 91.0% 

LSTM-IDS 95.1% 94.1% 

Proposed 

Model 
98.3% 97.5% 

Table 14. F1-Score on training and testing data 

Method 
Training F1-

Score 

Testing F1-

Score 

CNN-IDS 87.4% 86.0% 

RF-IDS 89.8% 89.2% 

LSTM-IDS 92.5% 92.5% 

Proposed 

Model 
97.1% 96.8% 

Table 15. Precision on training and testing data 

Method 
Training 

Precision 

Testing 

Precision 

CNN-IDS 88.7% 86.8% 

RF-IDS 90.3% 89.7% 

LSTM-IDS 93.1% 93.0% 

Proposed 

Model 
97.5% 97.2% 

Table 16. Recall of training and testing data 

Method Training Recall Testing Recall 

CNN-IDS 86.1% 84.9% 

RF-IDS 88.9% 88.5% 

LSTM-IDS 91.7% 91.9% 

Proposed Model 96.5% 96.3% 

 

The proposed model shows a generalizing gap by 

achieving a higher degree of accuracy in testing, 97.5%. The 

F1-score, which came out at 96.8% on test data, offers still 

more evidence that the proposed model is robust. This relates 

to the score of 86.0% for CNN-IDS, 89.2% for RF-IDS, and 

92.5% for LSTM-IDS. Clearly, there is a better balance 

between recall and accuracy that would generate less false 

classifications. Precision and recall values followed a similar 

trend as the proposed model got the best performance (97.2% 

accuracy and 96.3% recall on testing data).  

The researchers arrived at this as their conclusion. This 

will raise attack detecting capability and help to reduce the 

false positive rate. Though generalizing performance across 

both the training and testing datasets is maintained high, the 

results show that deep ensemble learning is a useful technique 

for exactly identifying DDoS. 

8. Conclusion 
Real-time sFlow-based traffic monitoring in the proposed 

Stacked Deep Ensemble Model effectively detects Distributed 

Denial of Service (DDoS) attacks in SDN. Here, we combine 

DNN, RNN, and ResNet. With a 97.5% accuracy rate, a 96.8% 

F1-score, a 97.2% precision rate, and a 96.3% recall rate, the 

experimental results on testing data showed better 

performance than the previously used approaches.  

The proposed method shows enhanced generalization and 

detection accuracy comparatively to CNN-IDS, RF-IDS, and 

LSTM-IDS. It also reduced the number of false positives and 

negatives the system produces. The model efficiently 

processes sampled network traffic using ONOS as the SDN 

controller and Prometheus as the time-series data storage, 

reducing the computational overhead while enabling real-time 

threat detection. Improved feature extraction is obtained by 

considering spatial and temporal changes in attack patterns in 

the deep ensemble architecture. The proposed approach, as the 

results reveal, precisely detects malicious traffic, ensuring 

network stability and resilience against DDoS hazards and 

increasing the SDN security of SDNs.  
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