International Journal of Engineering
Trends and Technology

Research Article | Open Access | Download PDF

Volume 10 | Number 3 | Year 2014 | Article Id. IJETT-V10P293 | DOI : https://doi.org/10.14445/22315381/IJETT-V10P293

Histogram Shifting Based Reversible Data Hiding


Lincy Rachel Mathews , Arathy C. Haran V

Citation :

Lincy Rachel Mathews , Arathy C. Haran V, "Histogram Shifting Based Reversible Data Hiding," International Journal of Engineering Trends and Technology (IJETT), vol. 10, no. 3, pp. 482-485, 2014. Crossref, https://doi.org/10.14445/22315381/IJETT-V10P293

Abstract

This paper presents a reversible data hiding scheme based on histogram modification. Distribution of pixel difference is used to achieve high hiding capacity. In order to solve the issue of communicating the multiple peak points to the recipients, a binary tree structure is adopted. Data embedding performed after block division facilitates the marked image quality. Histogram shifting technique prevents overflow and underflow problems.


Keywords

Histogram shifting(HS), Least significant bit(LSB)

References

[1] R.Norcen, M.Podesser, A.Pommer, H.Schmidt, and A.Uhl, “Confidential Storage and Transmission of Medical Image Data” Computers in Biology and Medicine 33, pp.277–292, 2003.
[2]J. Fridrich, M. Goljan, and R. Du, “Lossless data embedding-new paradigm in digital watermarking,” Eur. Assoc. Signal Process. J. Appl. Signal Process., vol. 2002, no. 2, pp. 185–196, Feb. 2002.
[3] T. Kalker and F. M. J. Willems, “Capacity bounds and constructions for reversible data hiding,” Security Watermarking Multimedia Contents V, vol. 5020, pp. 604–611, Jun. 2003.
[4] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Lossless generalized-LSB data embedding,” IEEE Trans. Image Process., vol. 14, no. 2, pp. 253–266, Feb. 2005.
[5] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 890–896, Aug. 2003.
[6] L. Kamstra and H. J. A. M. Heijmans, “Reversible data embedding into images using wavelet techniques and sorting,” IEEE Trans. Image Process., vol. 14, no. 12, pp. 2082–2090, Dec. 2005.
[7] D. M. Thodi and J. J. Rodriguez, “Expansion embedding techniques for reversible watermarking,” IEEE Trans. Image Process., vol. 16, no. 3, pp. 721–730, Mar. 2007
[8] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 3, pp. 354–362, Mar. 2006.
[9] S. K. Lee, Y. H. Suh, and Y. S. Ho, “Reversible image authentication based on watermarking,” in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2006, pp. 1321–1324.
[10] W. Hong, T. S. Chen, and C. W. Shiu, “Reversible data hiding for high quality images using modification of prediction errors,” J. Syst. Softw., vol. 82, no. 11, pp. 1833–1842, Nov. 2009.
[11] M. Fallahpour and M. H. Sedaaghi, “ High capacity lossless data hiding based on histogram modification,” IEICE Electron. Exp., vol. 4, no. 7, pp. 205–210, Apr. 2007.
[12] S. K. Lee, Y. H. Suh, and Y. S. Ho, “Reversible image authentication based on watermarking,” in Proc. IEEE Int. Conf. Multimedia Expo, Toronto, ON, Canada, Jul. 2006, pp. 1321–1324.
[13]D. Coltuc and J. M. Chassery, “Very fast watermarking by reversible contrast mapping,” IEEE Signal Process. Lett., vol. 14, no. 4, pp. 255–258, Apr.2007


Time: 0.0013 sec Memory: 32 KB
Current: 1.87 MB
Peak: 4 MB