Research Article | Open Access | Download PDF
Volume 21 | Number 2 | Year 2015 | Article Id. IJETT-V21P279 | DOI : https://doi.org/10.14445/22315381/IJETT-V21P279
A Survey on Image Retrieval System Based on Contents
Shamira Arshad Shaikh, Roshni Padte
Citation :
Shamira Arshad Shaikh, Roshni Padte, "A Survey on Image Retrieval System Based on Contents," International Journal of Engineering Trends and Technology (IJETT), vol. 21, no. 2, pp. 409-414, 2015. Crossref, https://doi.org/10.14445/22315381/IJETT-V21P279
Abstract
In this paper a survey on content based image retrieval presented. Content Based Image Retrieval (CBIR) is a technique which uses visual features of image such as colour, shape, texture, etc…to search user required image from large image database according to user’s requests in the form of a query image. Here comparison is based on local-descriptor, wavelets, scale-invariants feature, edge descriptor histograms (EDH), discrete cosine transform (DCT), discrete wavelet transform (DWT).
Keywords
CBIR, EDH, SIFT, DWT, DCT, image retrieval system.
References
[1] Mikolajczyk K, Schmid,C, “A Performance Evaluation of Local Descriptors,”.IEEE Trans.Pattern Analysis and Machine Intelligence,27(10),2005,pp.1615-1630.
[2] Effective content-based image retrieval: Combination of quantized histogram texture features in the DCT domain Fazal-e-Malik ; Dept. of Comput. & Inf. Sci., Univ. Teknol. PETRONAS, Tronoh, Malaysia ; Baharudin, B ge(s): 425 -430Print ISBN:978-1-4673-1937-9INSPEC Accession Number:12981369 Conference Location :Kuala Lumpeu DOI:10.1109/ICCISci.2012.6297283 Publisher:IEEE.
[3] M Singha, K Hemachandran, A Paul - Image Processing, IET, 2012 - ieeexplore.ieee.org.Content-based image retrieval using the combination of the fast wavelet transformation and the color histogram
Cited by 10 Related articles All 3 versions Cite Save [4] S. Soman, M. Ghorpade, V. Sonone and S. Chavan, “Content Based Image Retrieval using Advanced Color and Texture Features,”International Conference in Computational Intelligence (ICCIA), 2011.
[5] E.Loupias, N.Sebe, S.Bres, and J-M.Jolion, “Waveletbased salient points for image retrieval,”IEEE International Conference on Image Processing, 2000(2),pp.518-521
[6] E. Loupias and N. Sebe, “Wavelet-based Salient Points for Image Retrieval ", RR 99.11, Laboratoire Reconnaissance de Formes et Vision, INSA Lyon, November 1999. On-line http://rfv.insa-1 yon.fr/-loupias/points/
[7] C. Wolf, "Content based Image retrieval using Interest Points and Texture Features ", RR 99.09, Laboratoire Reconnaissance de Formes et Vision, INSA Lyon, 1999
[8] Content Based Image Retrieval using Discrete Wavelet Transform and Edge Histogram DescriptorAgarwal, S. ; Phys. & Comput. Sci. Dept., Dayalbagh Educ. Inst., Agra, India ; Verma, A.K. ; Singh, P. Print ISBN:978-1-4673- 5987-0