International Journal of Engineering
Trends and Technology

Research Article | Open Access | Download PDF

Volume 49 | Number 3 | Year 2017 | Article Id. IJETT-V49P272 | DOI : https://doi.org/10.14445/22315381/IJETT-V49P272

Synthesis of Energy Producing Material by Liquid Phase Epitaxy


Pankaj Kumar, Ayush Kumar

Citation :

Pankaj Kumar, Ayush Kumar, "Synthesis of Energy Producing Material by Liquid Phase Epitaxy," International Journal of Engineering Trends and Technology (IJETT), vol. 49, no. 3, pp. 467-476, 2017. Crossref, https://doi.org/10.14445/22315381/IJETT-V49P272

Abstract

Hybrid Halide Perovskite materials are most promising solution for optoelectronic devices due to several inherent properties such as long range crystallinity, high carrier mobility, large diffusion length of charge carrier, ease solution processability, low cost, high absorption coefficient and so on. The liquid phase epitaxy growth of these materials and their different optical and structural characterization is presented in the present work. LPE is the growth of thin film from supersaturated solution of material. We use different substrate for LPE deposition to get long order crystallinity in film along with good coverage and uniformness of surface. Literature review on electronic, structural and optical properties of hybrid perovskite materials is also presented.an overviewof various growth techniques for liquid phase epitaxy is also presented.

Keywords

Perovskite solar cell, Liquid phase epitaxy (LPE).

References

1. Akihiro Kojima, K. T. Y. S. a. T. M., 2009. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. AM. CHEM. SOC. 2009, 131, 6050–6051.
2. Chonghea Li, X. L. W. D. L. F. Y. G. a. Z. G., 2008. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Cryst. (2008). B64, 702–707.
3. E. Mosconi, A. A. M. K. N. M. G. a. F. D. A., 2013. J Phys Chem C, 2013, 117,13902-13913.
4. Edoardo Mosconi, A. A. M. K. N. M. G. a. F. D. A., 2013. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. dx.doi.org/10.1021/jp4048659 | J. Phys. Chem. C 2013, 117, 13902?13913.
5. Guichuan Xing, e., 2013. Long-Range Balanced Electron and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013, 342, 344-347.
6. Mathews, T. C. S. a. N., 2014. Advancements in Perovskite Solar Cells: Photophysics behind the Photovoltaics. DOI: 10.1039/C4EE00673A, p. 1.
7. Peter, c. & Michael, m., 2007. Liquid Phase Epitax of electronic, optical and optoelectronic material. s.l.:John Wiley & Sons Ltd.
8. Samuel D. Stranks, G. E. E. G. G. C. M. J. P. A. T. L. L. M. H. A. P. H. J. S., 2013. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. SCIENCE VOL 342 18 OCTOBER 2013.
9. Valerio D’Innocenzo, G. G. M. J. A. A. R. S. K., 2014. Excitons versus free charges in organo-lead tri-halide perovskites. DOI: 10.1038/ncomms4586.

Time: 0.0013 sec Memory: 32 KB
Current: 1.88 MB
Peak: 4 MB