International Journal of Engineering
Trends and Technology

Research Article | Open Access | Download PDF

Volume 70 | Issue 2 | Year 2022 | Article Id. IJETT-V70I2P219 | DOI : https://doi.org/10.14445/22315381/IJETT-V70I2P219

Obtaining Nanocarbon from Local Raw Materials and Studying Its Textural and Sorption Properties


Hilola N. Xolmirzayeva, Normurot I. Fayzullayev

Citation :

Hilola N. Xolmirzayeva, Normurot I. Fayzullayev, "Obtaining Nanocarbon from Local Raw Materials and Studying Its Textural and Sorption Properties," International Journal of Engineering Trends and Technology (IJETT), vol. 70, no. 2, pp. 163-171, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I2P219

Abstract

In this article studied the influence of various factors on the synthesis of nano carbons from walnut shells, apricot kernels, methane, natural gas and propanebutane fractions, and also checked the textural and sorption characteristics of the obtained nanocarbon. The catalytic activity of a catalyst containing (CuO)x*(CoO)y*(NiO)z*(Fe2O3)k*(MoO3)m/HSZ prepared based on "sol-gel" technology for the implementation of processes was studied under differential reactor conditions.

The morphological composition of the samples was performed by scanning electron microscopy on an LEO EVO 50 HVP instrument equipped with a part of energy dispersive X-ray microanalysis. Energy-dispersive X-ray spectra were recorded at a working distance of 10 mm at 20 kV. The microstructure of the samples was investigated by the method of a glowing electron microscope on a Jem2000 CX device. Using the BET method, the specific surface area of the carbon nanotubes was measured. Statistical and morphological characteristics of material porosity were calculated. The specific surface area is 168.7 m2 /g, the specific pore volume is 0.456 cm3 /g, and the average hole diameter is 2.58 nm. In the case of walnut shells, this absorption band was observed at 1376 cm-1 and 1064 cm-1 . When examining samples based on apricot kernels in the infrared spectrum at various temperatures in an inert nitrogen atmosphere, it can be seen that cellulose and lignin are characterized by a strong absorption band, and the treatment decreases with increasing temperature.

The infrared spectra of carbon nanotubes have the same half-width, which indicates a structural change in change in the infrared spectrum in the 1300-1600 cm-1 region. Changes in the infrared spectrum in the bands of ≈1330 cm-1 and ≈1590 cm-1 indicate the presence of graphite in the composition. This suggests that multilayer pipes differ sharply from single-layer pipes. When analysing the infrared spectra of carbon, the change in the frequency of 1730 cm-1 refers to the longitudinal vibration C=O, which indicates the presence of oxygen groups in the compound. At the same time, the influence of various factors on the rate of formation of nanocarbon from fractions of methane, natural gas and propane-butane was studied, and the optimal conditions for the process were proposed.

Keywords

Walnut Shells, Apricot Kernels, Methane, Natural Gas, Propane-Butane Fractions, Texture, Sorption, Catalyst, Nanocarbon, Synthesis.

References

[1] Sergeev GB. Nanochemistry. 2nd ed., Rev. and add. Publishing house of Moscow State University. Moscow. (2007)336 .
[2] Su DS, Perathoner S, Centi G. Nano carbons for the development of advanced catalysts. Chemical reviews. 113(8) (2013) 5782-816.
[3] Ivanova A.A., Novikov M.A., Titov E.A., Pozdnyakov A.S., Emelyanov A.I., Ermakova T.G., Sosedova L.M., Prozorova G.F. Issledovanie toksichnosti azotsoderzhashhego polimera i nanokompozita s nanochasticami serebra [Investigation of toxicity of nitrogen-containing polymer and nanocomposite with silver nanoparticles]. Prikladnaja himija i biotehnologija, 6(4) (2016) 28– 33. (in Russian).
[4] Rogovin Z.A., Shorygin N.N. Chemistry of cellulose and its companions. State chem. Pub; (1953) 520.
[5] Offan, K. B., Petrov, V. S., Efremov, A. A. Zakonomernosti piroliza skorlupy kedrovyh orehov s obrazovaniem drevesnogo uglja v intervale temperature 200-500 ℃ (Regularities of pyrolysis of pine nut shells with the formation of charcoal in the temperature range 200-500 ºС). Chemistry of plant raw materials. (1999) (2) 61-64. (in Russian).
[6] Оффан КБ, Петров ВС, Ефремов АА. Закономерности пиролиза скорлупы кедровых орехов с образованием древесного угля в интервале температур 200-500 ºС. Химия растительного сырья. 1999(2) 61–64.
[7] Арутюнов АИ, Свешников ИГ. Низкотемпературная сепарация природного газа. М., Гостоптехиздат. (1960) 61.
[8] Михайлов И.П. Расчет температурных режимов НТС природного газа с применением ингибиторов гидратообразования. Газовое дело, 1964. (12) (1964) 8-11.
[9] Зарницкий Г.Э Теоретические основы использования энергии давления природного газа. - М.: Недра, (1968)296
[10] Кемпбел Д.М. Очистка и переработка природных газов: пер.с анг. под редакцией С.Ф. Гудкова. -М.: Недра, (1977) 345
[11] Талдай В. А. Недостатки в работе установок НТС с двухступенчатой сепарацией. -Газовое дело, 2 (1971) 18-20.
[12] Ю.П. Коротаев, М.Ф. Ткаченко Определение количества конденсата, извлекаемого из природного газа при многоступенчатой низкотемпературной сепарации. Газовое дело, 5 (1971) 25-31.
[13] Samuel, A.E, Olotu, O.O, Nwankwo, I.C, Odesola O.O, Akinsanya O.O, Utilization of Polyacrylamide grafted Brewer Spent Grain (BSG) for Sorption of Cd2+, Cu2+ and Pb2+ ions in aqueous solution., International Journal of Engineering Trends and Technology (IJETT), 43(1) 47-52
[14] A. S. Rathore, Manoj Pradhan, S. V. Deo, A. K. Dash "Coal Mine Overburden As Resource Material For Making Brick" International Journal of Engineering Trends and Technology 70(1) (2022)118- 125.
[15] А.И. Гриценко, И.А. Галанин, Р.Ф. Будымка. Опыт рационального использования холода на промысловых установках. Москва, ВНИИОЭНГ, (1972) 96.
[16] Л. Гризанти Контроль точек росы природного газа при помощи силикагеля для оптимизации транспорта газа на большие расстояния (На примере установки подготовки газа к транспорту ≪Портовая≫ в рамках проекта ≪Северный поток≫/Рекламные фолдеры компании ≪Siirtec Nigi S.p.A.≫ // http: //www.nord-stream.com
[17] Лакеев В.П. Адсорбционный процесс промысловой подготовки газа. Этапы развития газоперерабатывающей подотрасли: Сб. науч. тр. Москва. ООО ≪ВНИИГАЗ≫, (1998) 223-249.
[18] Лакеев В.П. Результаты применения цеолита NaA для осушки природного газа, содержащего пары метанола. Газовая промышленность. (10) (1973) 39-42.
[19] Богаев А.Н., Горелова О.М., Курочкин Э.С. Изучение закономерностей процесса пиролиза скорлупы кедрового ореха и получение на ее основе активированного угля с заданными свойствами. Ползуновский вестник. 3 (2014) 217- 20.
[20] Wang W., Qi J., Sui Y., He Y., Meng Q., Wei F., Jin Y. An asymmetric supercapacitor based on activated porous carbon derived from walnut shells and NiCo2O4 nanoneedle arrays electrodes. Journal of nanoscience and nanotechnology. 18(8) (2018) 5600-8. https://doi.org/10.1166/lnn.2018.15410
[21] Фарберова Е.А., Тиньгаева Е.А., Чучалина А.Д., Кобелева А.Р., Максимов А.С. Получение гранулированного активного угля из отходов растительного сырья. Известия высших учебных заведений. Химия и химическая технология. 61(3) (2018) .https://doi.org/10.1166/lnn.2018.15410.
[22] Fayzullaev NI, Bobomurodova SY, Avalboev GA, Matchanova MB, Norqulova ZT. Catalytic Change of C1-C4-Alkanes. International Journal of Control and Automation. 13(2) (2020) 827-35. http://sersc.org/journals/index.php/IJCA/article/view/11230.
[23] Ampelli C, Perathoner S, Centi G. Carbon-based catalysts: opening new scenario to develop next-generation nano-engineered catalytic materials. Chinese Journal of Catalysis. ., 35(6) (2014) 783-91. https://doi.org/10.1016/S1872-2067(14)60139-X.
[24] Mamadoliev I.I., Khalikov K.M., Fayzullaev N.I. Synthesis of high silicon of zeolites and their sorption properties. International Journal of Control and Automation. 13(2) (2020) 703-9.
[25] Mamadoliev, I.I., Fayzullaev, N.I. Optimization of the Activation Conditions of High Silicon Zeolite, Int. J. Adv. Sci. Technol.; 29(03) (2020) 6807-13. http://sersc.org/journals/index.php/IJAST/article/view/7333.
[26] Mansurov ZA. Some Applications of nanocarbon materials for novel devices. InNanoscale Devices-Fundamentals and Applications (2006) 355-368. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5107-4_25.
[27] S.C. Aslanov, A.Q. Buxorov, N.I. Fayzullayev, Catalytic Synthesis of С2 - С 4 -Alkenes from Dimethyl Ether, Int. J. Eng. Trends Technol. 69 (2021) 67–75. https://doi.org/10.14445/22315381/IJETT-V69I4P210.
[28] D.S. Su. The use of natural materials in nanocarbon synthesis. ChemSusChem: Chemistry & Sustainability Energy & Materials. 2(11) (2009) 1009-20. https://doi.org/10.1002/CSSC.200900046

Time: 0.0013 sec Memory: 48 KB
Current: 1.91 MB
Peak: 4 MB